Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Published: January 2025

AI Article Synopsis

  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.

Article Abstract

Flexible hydrogel sensors have found extensive applications. However, the insufficient sensing sensitivity and the propensity to freeze at low temperatures restrict their use, particularly in frigid conditions. Herein, a multifunctional eutectogel with high transparency, anti-freezing, anti-swelling, adhesive, and self-healing properties is prepared by a one-step photopolymerization of acrylic acid and lauryl methacrylate in a binary solvent comprising water and deep eutectic solvent (DES). The results from the molecular dynamics simulations and density functional theory indicate that the hydrogen bonds between DES and water mixtures possess better stability than those between water molecules. On the other hand, DES breaks down hydrogen bonds in water, providing eutectogels with excellent anti-freezing even at -60 °C. Cetyltrimethylammonium bromide is incorporated to establish stable hydrophobic interactions and electrostatic attractions with polymer chains in the eutectogel network, resulting in superior mechanical (elongation at break of 2890%) and anti-swelling (only 2% swelling in water over 7 days) properties. The eutectogel-based strain sensors exhibit remarkable sensitivity, achieving a gauge factor of up to 15.4. The multifunctional eutectogel sensors can monitor motion and transmit encrypted information at low temperatures, demonstrating considerable potential for applications in flexible electronics within low-temperature environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01665cDOI Listing

Publication Analysis

Top Keywords

multifunctional eutectogel
12
low temperatures
8
hydrogen bonds
8
water
5
environmentally tolerant
4
tolerant multifunctional
4
eutectogel
4
eutectogel highly
4
highly sensitive
4
sensitive wearable
4

Similar Publications

Versatile poly (deep eutectic solvents) electroactive chitosan eutectogel for infected wound healing and monitoring administration.

Carbohydr Polym

March 2025

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China. Electronic address:

The treatment and monitoring of infected skin wounds present significant clinical challenges. Herein, a multifunctional poly(deep eutectic solvent) (PDES) electroactive hydrogel is developed by optimizing the components and the ratio of hydrogen donors and acceptors, achieving well wound hemostasis, wound healing, and monitoring administration performace. The PDES hydrogel dressing exhibits mechanical properties, including high toughness, fatigue resistance (over 9000 compression cycles), and superior skin adhesion (over 70 kPa).

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Article Synopsis
  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.
View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

Mechanically Resilient, Self-Healing, and Environmentally Adaptable Eutectogel-Based Triboelectric Nanogenerators for All-Weather Energy Harvesting and Human-Machine Interaction.

ACS Nano

January 2025

Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian116034, P. R. China.

Triboelectric nanogenerators (TENGs) have garnered significant attention for mechanical energy harvesting, self-powered sensing, and human-machine interaction. However, their performance is often constrained by materials that lack sufficient mechanical robustness, self-healing capability, and adaptability to environmental extremes. Eutectogels, with their inherent ionic conductivity, thermal stability, and sustainability, offer an appealing alternative as flexible TENG electrodes, yet they typically suffer from weak damage endurance and insufficient self-healing capability.

View Article and Find Full Text PDF

Lignin-reinforced eutectogel with environmentally stability for high-performance human multi-functional sensor.

Int J Biol Macromol

January 2025

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China. Electronic address:

Intrinsic environmental instability of hydrogels has limited their practical applications as durable flexible sensors in human life. In this study, a bio-based eutectogel (BEG) with environmental tolerance was designed via deep eutectic solvent (DES), thioctic acid (TA) and lignin. Benefit from self-ring-opening polymerization of TA monomer in the ethanol and the lignin acting as free radicals, the BEG was fabricated through efficient cast-drying method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!