The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F. bidentis, which showed GUS expression in BSCs and their progenitor cells. The GUS expression pattern in F. bidentis transformants and comparison with the closely related C-type Flaveria pringlei revealed that higher-order veins were initiated in the early leaf developmental stage. Treatment with an auxin polarity transport inhibitor decreased the MC area and led to vein formation without free ends, resulting in the formation of BSCs in positions adjacent to other BSCs. However, BSC differentiation was not affected, as evidenced by BSC specific FbSCR1 expression and RuBisCO accumulation. These results indicate that polar auxin transport is important for MC proliferation and/or differentiation, which leads to the formation of a C-type cell pattern in which MCs and BSCs are equally adjacent.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15374DOI Listing

Publication Analysis

Top Keywords

bundle sheath
8
sheath cells
8
dicotyledonous plants
8
c-type cell
8
cell pattern
8
gus expression
8
bscs
5
early initiation
4
initiation bundle
4
cells
4

Similar Publications

The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F.

View Article and Find Full Text PDF

Chloroplast arrangement in finger millet under low-temperature conditions.

Biochim Biophys Acta Gen Subj

January 2025

RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Background: Finger millet, a C plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.

Methods: To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors.

View Article and Find Full Text PDF

Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high temperature stress for two weeks (42°C, compared to 28°C).

View Article and Find Full Text PDF

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

The anatomical reorganization required for C photosynthesis should also impact plant hydraulics. Most C plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (K). Paradoxically, the C pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C plant water relations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!