Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance. This approach deposited Pd@Au nanoparticles (NPs) inside chlorella cells, which are further coated with FeO NPs and polydopamine layers to form the magnetic heads. Then, flexible flagella are grafted via magnetic assembly of FeO@PVP NPs to construct the final AlgaeSperm. Under precessing magnetic fields, the AlgaeSperms can achieve a forward velocity up to 2.3 body length/s, the highest among sperm-like magnetic microrobots to the best of the knowledge. Besides, their flexible maneuverability in a swarm is also verified. In vitro anti-cancer experiments are conducted after loading doxorubicin (DOX) to confirm their excellent targeted chemo-photothermal performance. This work offers a significant paradigm for constructing sperm-like soft magnetic microrobots with great potential for targeted tumor treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407585 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!