Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Published: January 2025

AI Article Synopsis

  • Recent marine pollution concerns revolve around the accidental spills of toxic C9 aromatics, particularly 1,2,3-trimethylbenzene (1,2,3-TMB), due to its high toxicity and resistance to degradation.
  • A marine diatom, Chaetoceros sp. QG-1, was isolated from Quangang, China, and demonstrated the highest degradation efficiency of 1,2,3-TMB at a concentration of 5 mg/L.
  • The study identified the degradation process, where 1,2,3-TMB is converted into less harmful compounds, involving key enzymes like 2OG Fe(II) oxygenase, thus supporting bioremediation efforts in polluted marine environments

Article Abstract

Recently, marine pollution by the accidental spills of C9 aromatics has raised public concerns, especially for 1,2,3-trimethylbenzene (1,2,3-TMB) because it is high-toxic and refractory. However, insufficient understanding of molecular mechanism underlying the biodegradation of 1,2,3-TMB hindered research on its bioremediation. In addition, microalgae-mediated bioremediation is popular due to its eco-friendliness and carbon sequestration. In this study, a marine diatom with degradation capability of 1,2,3-TMB, Chaetoceros sp. QG-1, was isolated from coastal area of Quangang, China. According to kinetics, the degradation efficiency of 1,2,3-TMB was the highest at 5 mg/L (K = 0.237/d) compared with other concentrations. Furthermore, the degradation mechanism of 1,2,3-TMB by Chaetoceros sp. QG-1 was revealed through analysis of degradation products and omics. 1,2,3-TMB was converted into 2,3-dimethylbenzoic acid and 2-hydroxypropionic acid by enzymes including non-heme Fe (II) and 2-oxoglutarate-dependent (2OG Fe (II)) oxygenase, UDP-glucose-6-dehydrogenase, aldehyde dehydrogenase, and other short-chain dehydrogenases, wherein, 2OG Fe (II) oxygenase was identified as the key enzyme to oxidize 1,2,3-TMB. This study provided species and theoretical supports for the bioremediation of marine environments contaminated with 1,2,3-TMB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123907DOI Listing

Publication Analysis

Top Keywords

123-tmb
8
123-tmb chaetoceros
8
chaetoceros qg-1
8
2og oxygenase
8
performance kinetics
4
kinetics mechanism
4
mechanism 123-trimethylbenzene
4
123-trimethylbenzene biodegradation
4
biodegradation newly
4
newly isolated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!