Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown. This study utilized chemical exchange saturation transfer (CEST) imaging combined with proton magnetic resonance spectroscopy (H-MRS) to monitor the dynamic changes of Glu and GABA in riluzole-treated AD mice, aiming to evaluate the efficacy and mechanism of riluzole in AD treatment.

Methods: GluCEST, GABACEST and H-MRS were used to longitudinally monitor Glu and GABA levels in 3xTg AD mice treated with riluzole (12.5 mg/kg/day) or vehicle for 20 weeks. Magnetic resonance measurements were performed at baseline, 6, 12, and 20 weeks post-treatment. Cognitive performance was assessed using the Morris Water Maze (MWM) at baseline, 10, and 20 weeks. At the study endpoint, immunohistochemistry, Nissl staining, and Western blot were used to evaluate the brain pathology, neuronal survival, and protein expression.

Results: GluCEST, GABACEST and H-MRS consistently revealed higher levels of Glu and GABA in the brain of riluzole-treated AD mice compared to untreated controls, which were associated with improvements in spatial learning and memory. The cognitive improvements significantly correlated with the increased GluCEST signals and Glu levels. Immunohistochemistry and Nissl staining demonstrated that riluzole treatment reduced amyloid-beta (Aβ) deposition, tau hyperphosphorylation, GFAP-positive astrocyte activation, and prevented neuronal loss. Moreover, riluzole upregulated the expression of excitatory amino acid transporter 2 (EAAT2), glutamic acid decarboxylase 65/67 (GAD65/67), and glutamine synthetase (GS), suggesting enhanced neurotransmitter metabolism.

Conclusions: CEST imaging combined with H-MRS demonstrated the effectiveness of riluzole in modulating Glu- and GABA-related changes and improving cognitive function in 3xTg AD mice, potentially through regulating key proteins involved in neurotransmitter metabolism. These findings suggest riluzole as a therapeutic agent for Alzheimer's disease and highlight the utility of multimodal MR imaging in monitoring treatment response and exploring disease mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13195-025-01672-3DOI Listing

Publication Analysis

Top Keywords

glu gaba
16
cest imaging
12
imaging combined
12
alzheimer's disease
12
riluzole
9
combined h-mrs
8
neuroprotective effects
8
magnetic resonance
8
riluzole-treated mice
8
glucest gabacest
8

Similar Publications

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Background: Rhythmic median nerve stimulation (MNS) at 10 Hz has been shown to cause a substantial reduction in tic frequency in individuals with Tourette syndrome. The mechanism of action is currently unknown but is hypothesized to involve entrainment of oscillations within the sensorimotor cortex.

Objective: We used functional magnetic resonance spectroscopy (fMRS) to explore the dynamic effects of MNS on neurometabolite concentrations.

View Article and Find Full Text PDF

Developing a Bacillus licheniformis platform for de novo production of γ-aminobutyric acid and other glutamate-derived chemicals.

Metab Eng

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:

Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy.

View Article and Find Full Text PDF

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique used to modulates cortical brain activity. However, its effects on brain metabolites within the dorsolateral prefrontal cortex (DLPFC), a crucial area targeted for brain stimulation in mental disorders, remain unclear. This study aimed to investigate whether prefrontal tDCS over the left and right DLPFC modulates levels of key metabolites, including gamma-aminobutyric acid (GABA), glutamate (Glu), glutamine/glutamate (Glx), N-acetylaspartate (NAA), near to the target region and to explore potential sex-specific effects on these metabolite concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!