Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).
Methods: We utilized GWAS data from the UK Biobank (comprising 56,167 patients and 352,255 control subjects) and the FinnGen cohort (including 23,834 patients and 228,085 control subjects). Genetic instruments for 734 plasma proteins and 154 cerebrospinal fluid proteins were derived from recently published GWAS. Bidirectional Mendelian randomization analysis, Steiger filtering, colocalization, and phenotype scanning were employed for reverse causal inference detection, further substantiating the Mendelian randomization results. A protein-protein interaction network was also constructed to reveal potential associations between proteins and asthma medications.
Results: Under Bonferroni significance conditions, Mendelian randomization analysis revealed causal relationships between seven proteins and asthma. In plasma, we observed that an increase of one standard deviation in IL1R1[1.30 (95% CI 1.20-1.42)], IL7R[1.07 (95% CI 1.04-1.11)], ECM1[1.03 (95% CI 1.02-1.05)], and CD200R1[1.18 (95% CI 1.09-1.27)] were associated with an increased risk of asthma, while an increase in ADAM19 [0.87 (95% CI 0.82-0.92)] was found to be protective. In the brain, each 10-fold increase in IL-6 sRa [1.29 (95% CI 1.15-1.45)] was associated with an increased risk of asthma, while an increase in Layilin [0.61 (95% CI 0.51-0.73)] was found to be protective. None of the seven proteins exhibited a reverse causal relationship. Colocalization analysis indicated that ECM1 (coloc.abf-PPH4 = 0.953), IL-6 sRa (coloc.abf-PPH4 = 0.966), and layilin (coloc.abf-PPH4 = 0.975) shared the same genetic variation as in asthma.
Conclusion: A causal relationship exists between genetically determined protein levels of IL1R1, IL7R, ECM1, CD200R1, ADAM19, IL-6 sRa, and Layilin (LAYN) and asthma. Moreover, the identified proteins may serve as attractive drug targets for asthma, especially ECM1 and Layilin (LAYN). However, further research is required to comprehensively understand the roles of these proteins in the occurrence and progression of asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12931-024-03086-5 | DOI Listing |
World Allergy Organ J
January 2025
Institute of Life Science, Chongqing Medical University, Chongqing, China.
Background: Allergic rhinitis (AR) is a common chronic respiratory disease that can lead to the development of various other conditions. Although genetic risk loci associated with AR have been reported, the connections between these loci and AR comorbidities or other diseases remain unclear.
Methods: This study conducted a phenome-wide association study (PheWAS) using known AR risk loci to explore the impact of known AR risk variants on a broad spectrum of phenotypes.
Comb Chem High Throughput Screen
January 2025
Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Observational studies have reported that arm fat, left leg fat, and trunk fat masses have different effects on polycystic ovarian syndrome (PCOS). However, the causal relationship between them remains unknown.
Materials And Methods: A two-sample Mendelian randomization (MR) study was conducted by utilizing pooled data from the largest Genome-Wide Association Study (GWAS).
Ren Fail
December 2025
Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.
Identifying risk factors for disease onset and progression has been a core focus in nephrology research. Mendelian Randomization (MR) has emerged as a powerful genetic epidemiological approach, utilizing genome-wide association studies (GWAS) to establish causal relationships between modifiable risk factors and kidney disease outcomes. MR uses genetic variants as instrumental variables to infer causal relationships between exposures and disease outcomes.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!