Background: Drug and protein targets affect the physiological functions and metabolic effects of the body through bonding reactions, and accurate prediction of drug-protein target interactions is crucial for drug development. In order to shorten the drug development cycle and reduce costs, machine learning methods are gradually playing an important role in the field of drug-target interactions.
Results: Compared with other methods, regression-based drug target affinity is more representative of the binding ability. Accurate prediction of drug target affinity can effectively reduce the time and cost of drug retargeting and new drug development. In this paper, a drug target affinity prediction model (WPGraphDTA) based on power graph and word2vec is proposed.
Conclusions: In this model, the drug molecular features in the power graph module are extracted by a graph neural network, and then the protein features are obtained by the Word2vec method. After feature fusion, they are input into the three full connection layers to obtain the drug target affinity prediction value. We conducted experiments on the Davis and Kiba datasets, and the experimental results showed that WPGraphDTA exhibited good prediction performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730168 | PMC |
http://dx.doi.org/10.1186/s12920-024-02073-5 | DOI Listing |
J Assist Reprod Genet
January 2025
The University of Texas Medical Branch at Galveston, Institute for Bioethics and Health Humanities, School of Public and Population Health, Galveston, TX, USA.
Egg donation is a procedure that is powerfully advertised as a beneficial experience with limited mention of the associated risks. Egg donor recruitment advertisements target young and financially insecure women and can serve as a catalyst for interest in egg donation. In the absence of explicit egg donation advertisement regulations and without counterbalancing information from other sources, potential donors may not be able to recognize how advertisements can be misleading.
View Article and Find Full Text PDFClin Pharmacokinet
January 2025
Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France.
Background And Objective: Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis.
Methods: In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions.
Mol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.
View Article and Find Full Text PDFLeukemia
January 2025
Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!