Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH). The enhanced selectivity of the *CHOOH pathway, instead of *CO, sustains the MOR activity to a practically high current density. For HER, triadic Pt, Pd, and OH-vacancy sites on (Ni,Co)(OH) create an "acid-base" microenvironment to facilitate water adsorption and splitting, forming H* species on Pt and Pd, and *OH at the vacancy, to promote efficient H evolution from the asymmetric Pt and Pd sites via the Tafel mechanism. The triadic-site synergy opens new avenues for the design and synthesis of highly efficient and stable cofunctional catalysts for "on-site-on-demand" H production, here facilitated by liquid methanol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c12665DOI Listing

Publication Analysis

Top Keywords

current density
8
density triadic
8
triadic active
8
active sites
8
methanol-enhanced low-cell-voltage
4
hydrogen
4
low-cell-voltage hydrogen
4
hydrogen generation
4
generation industrial-grade
4
industrial-grade current
4

Similar Publications

During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.

View Article and Find Full Text PDF

Emergency shelters are multifunctional spaces that provide safe refuge, essential life protection, and rescue command for residents in case of urban disaster. These shelters constitute crucial components of urban public safety. This study, with Tianhe District in Guangzhou City as a case study, used data from emergency evacuation sites and other socio-economic sources to construct an evaluation system for spatial suitability evaluation and layout optimization of emergency shelters.

View Article and Find Full Text PDF

The electrocatalytic carbon dioxide reduction reaction (CORR) at industrial-level current densities provides a sustainable approach to converting CO into value-added fuels and feedstocks using renewable electricity. However, the CORR conducted typically in alkaline and neutral electrolytes encounters some challenges due to the inevitable reaction between CO and OH ions, which undermines CO utilization and leads to poor operational stability. Acidic media present a viable alternative by reducing (bi)carbonate production, thereby enhancing the carbon efficiency and stability in CORR.

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)] ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!