Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review.

BMC Cancer

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Published: January 2025

Background: Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.

Methods: This systematic review examines recent advancements in machine learning (ML) and deep learning (DL) applications for melanoma diagnosis and prognosis using dermoscopy images. We conducted a thorough search across multiple databases, ultimately reviewing 34 studies published between 2016 and 2024. The review covers a range of model architectures, including DenseNet and ResNet, and discusses datasets, methodologies, and evaluation metrics used to validate model performance.

Results: Our results highlight that certain deep learning architectures, such as DenseNet and DCNN demonstrated outstanding performance, achieving over 95% accuracy on the HAM10000, ISIC and other datasets for melanoma detection from dermoscopy images. The review provides insights into the strengths, limitations, and future research directions of machine learning and deep learning methods in melanoma diagnosis and prognosis. It emphasizes the challenges related to data diversity, model interpretability, and computational resource requirements.

Conclusion: This review underscores the potential of machine learning and deep learning methods to transform melanoma diagnosis through improved diagnostic accuracy and efficiency. Future research should focus on creating accessible, large datasets and enhancing model interpretability to increase clinical applicability. By addressing these areas, machine learning and deep learning models could play a central role in advancing melanoma diagnosis and patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-024-13423-yDOI Listing

Publication Analysis

Top Keywords

machine learning
24
learning deep
24
deep learning
24
melanoma diagnosis
16
diagnosis prognosis
12
dermoscopy images
12
learning
12
melanoma
8
melanoma detection
8
learning methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!