Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types. In this study, to convert common polyethylenimine (PEI) into high-performance DNA delivery vectors, an innovative multifunctional vector was constructed based on histidine linked to PEI by redox-responsive disulfide bonds. Apart from highly efficient transfection of both small and large plasmids into HEK 293T (Human Embryonic Kidney 293T cells) with negligible cytotoxicity, PEI-S-S-His showed great transfection potential even at low plasmid doses (0.5 µg), as well as at serum concentrations ranging from 5 to 30% into HEK 293T cells, and achieved excellent plasmid transfection into NIH/3T3 (Mouse Embryonic Fibroblast cells), and MCF7 (Human Breast Cancer cells). Additionally, several metals were tested (Co, Cu, Cd, Ni, Zn, and Mn) to promote the plasmid packaging functionality and improve transfection efficiency. We observed that, in comparison to PEI-S-S-His, the manganese-functionalized nanocarrier (PEI-S-S-His-Mn) could transfect a large plasmid with equal efficiency (~ 30%) into MSCs (Mesenchymal Stem Cells). Interestingly, PEI-S-S-His-Mn showed higher transfection efficiency with the small plasmid (~ 90%) and the large one (~ 80%) into HEK 293T cells, even better than its backbone. We propose that the presence of metal-coordinated His ligand, redox-responsive S-S bonds, and the cationic polymer can synergistically provide robust DNA binding, efficient endosomal disruption, tolerance of serum protein adsorption, and low cytotoxicity. These new vectors could be promising for gene delivery and may be therapeutically relevant.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-024-01360-xDOI Listing

Publication Analysis

Top Keywords

gene delivery
12
transfection efficiency
12
hek 293t
12
293t cells
12
transfection
6
cells
6
plasmid
5
metal-coordinated histidine-functionalized
4
histidine-functionalized redox-responsive
4
redox-responsive polyethyleneimine
4

Similar Publications

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

En masse evaluation of RNA guides (EMERGe) for ADARs.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States. Electronic address:

Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

Folic acid-targeted β-lactoglobulin nanocarriers for enhanced delivery of 5-fluorouracil and sodium butyrate in colorectal cancer treatment.

Int J Pharm

January 2025

Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!