Protein aggregates are associated with numerous diseases. Here we report a platform for the rapid phenotypic selection of protein aggregation inhibitors from genetically encoded cyclic peptide libraries in Escherichia coli based on phage-assisted continuous evolution (PACE). We developed a new PACE-compatible selection for protein aggregation inhibition and used it to identify cyclic peptides that suppress amyloid-β42 and human islet amyloid polypeptide aggregation. Additionally, we integrated a negative selection that removes false positives and off-target hits, greatly improving cyclic peptide selectivity. We show that selected inhibitors are active when chemically resynthesized in in vitro assays. Our platform provides a powerful approach for the rapid discovery of cyclic peptide inhibitors of protein aggregation and may serve as the basis for the future evolution of cyclic peptides with a broad spectrum of inhibitory activities.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41589-024-01823-xDOI Listing

Publication Analysis

Top Keywords

cyclic peptide
16
protein aggregation
16
selection protein
12
rapid discovery
8
discovery cyclic
8
aggregation inhibitors
8
cyclic peptides
8
cyclic
6
protein
5
aggregation
5

Similar Publications

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

Early initiation of ceftaroline-based combination therapy for methicillin-resistant Staphylococcus aureus bacteremia.

Ann Clin Microbiol Antimicrob

January 2025

Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health, Charlottesville, Virginia, USA.

Purpose: Monotherapy with vancomycin or daptomycin remains guideline-based care for methicillin-resistant Staphylococcus aureus bacteremia (MRSA-B) despite concerns regarding efficacy. Limited data support potential benefit of combination therapy with ceftaroline as initial therapy. We present an assessment of outcomes of patients initiated on early combination therapy for MRSA-B.

View Article and Find Full Text PDF

Protein aggregates are associated with numerous diseases. Here we report a platform for the rapid phenotypic selection of protein aggregation inhibitors from genetically encoded cyclic peptide libraries in Escherichia coli based on phage-assisted continuous evolution (PACE). We developed a new PACE-compatible selection for protein aggregation inhibition and used it to identify cyclic peptides that suppress amyloid-β42 and human islet amyloid polypeptide aggregation.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Background: In the fifth National Wilms Tumor Study, patients received vincristine and dactinomycin (VA) without radiation for stage I focal anaplastic Wilms tumor (FAWT) and VA plus doxorubicin (DD4A) and radiation for stage II-IV FAWT. Four-year event-free survival (EFS) and overall survival (OS) for stage I FAWT were 67.5% and 88.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!