Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites. The dominant polymer types found in this study were tire wear, polystyrene and polyethylene particles (41%, 28% and 12%, respectively). Lagrangian dispersion modelling was used to reconstruct possible sources of micro- and nanoplastic emissions for those observations, which appear to lie largely to the west of the Alps. France, Spain and Switzerland have the highest contributions to the modelled emissions. The citizen science approach was found to be feasible providing strict quality control measures are in place, and is an effective way to be able to collect data from remote and inaccessible regions across the world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84210-9 | DOI Listing |
Sci Rep
January 2025
Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.
Nanoplastics are suspected to pollute every environment on Earth, including very remote areas reached via atmospheric transport. We approached the challenge of measuring environmental nanoplastics by combining high-sensitivity TD-PTR-MS (thermal desorption-proton transfer reaction-mass spectrometry) with trained mountaineers sampling high-altitude glaciers ("citizen science"). Particles < 1 μm were analysed for common polymers (polyethylene, polyethylene terephthalate, polypropylene, polyvinyl chloride, polystyrene and tire wear particles), revealing nanoplastic concentrations ranging 2-80 ng mL at five of 14 sites.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.
Soil hosts key components of terrestrial biodiversity providing essential services to the below- and above-ground ecosystems. The worldwide retreat of glaciers is exposing new deglaciated terrains, offering a unique opportunity to understand the development of soil ecosystems under a changing climate. Many studies have investigated how biotic communities change after deglaciation, but protists have often been overlooked despite their key role in multiple ecosystem functions.
View Article and Find Full Text PDFEnviron Monit Assess
October 2024
Dept. of Natural and Environmental Risks, Regional Agency for Environmental Protection of the Piedmont Region (ARPA Piemonte), Via Pio VII, 9, 10135, Turin, Italy.
Intact rock glaciers (RG) are considered valuable water storage because containing permafrost ice volumes. The hydrological relevance of RG is forecasted to increase with respect to glaciers under climate change scenarios, as well as RG's role as water resources in alpine basins for multiple uses. Besides the assessment of water amount stored in intact rock glaciers, the evaluation of water quality is of primary importance.
View Article and Find Full Text PDFSci Rep
September 2024
Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, INAIGEM, Huaraz, 100190, Ancash, Peru.
In high-altitude regions, such as the Peruvian Andes, understanding the transformation of precipitation types under climate change is critical to the sustainability of water resources and the survival of glaciers. In this study, we investigate the distribution and types of precipitation on a tropical glacier in the Peruvian Central Andes. We utilized data from an optical-laser disdrometer and compact weather station installed at 4709 m ASL, combined with future climate scenarios from the CMIP6 project, to model potential future changes in precipitation types.
View Article and Find Full Text PDFSci Total Environ
September 2024
Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy.
In glacier-fed streams, the Windows of Opportunity (WOs) are periods of mild environmental conditions supporting the seasonal development of benthic microorganisms. WOs have been defined based on changes in biofilm biomass, but the responses of microbial diversity to WOs in Alpine streams have been overlooked. A two year (2017-2018) metabarcoding of epilithic and epipsammic biofilm prokaryotes was conducted in Alpine streams fed by glaciers (kryal), rock glaciers (rock glacial), or groundwater/precipitation (krenal) in two catchments of the Central-Eastern European Alps (Italy), aiming at testing the hypothesis that: 1) environmental WOs enhance not only the biomass but also the α-diversity of the prokaryotic biofilm in all stream types, 2) diversity and phenology of prokaryotic biofilm are mainly influenced by the physical habitat in glacial streams, and by water chemistry in the other two stream types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!