Precise deletion, replacement and inversion of large DNA fragments in plants using dual prime editing.

Nat Plants

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.

Published: January 2025

Precise manipulation of genome structural variations holds great potential for plant trait improvement and biological research. Here we present a genome-editing approach, dual prime editing (DualPE), that efficiently facilitates precise deletion, replacement and inversion of large DNA fragments in plants. In our experiments, DualPE enabled the production of specific genomic deletions ranging from ~500 bp to 2 Mb in wheat protoplasts and plants. DualPE was effective in directly replacing wheat genomic fragments of up to 258 kb with desired sequences in the absence of donor DNA. Additionally, DualPE allowed precise DNA inversions of up to 205.4 kb in wheat plants with efficiencies of up to 51.5%. DualPE also successfully edited large DNA fragments in the dicots Nicotiana benthamiana and tomato, with editing efficiencies of up to 72.7%. DualPE thus provides a precise and efficient approach for large DNA sequence and chromosomal engineering, expanding the availability of precision genome-editing tools for crop improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-024-01898-3DOI Listing

Publication Analysis

Top Keywords

large dna
16
dna fragments
12
precise deletion
8
deletion replacement
8
replacement inversion
8
inversion large
8
fragments plants
8
dual prime
8
prime editing
8
dna
6

Similar Publications

In 2021, the Indian Undiagnosed Diseases Program was initiated for patients without a definite diagnosis despite extensive evaluation in four participating sites. Between February 2021 and March 2023, a total of 88 patients were recruited and underwent deep phenotyping. A uniform methodology for data re-analysis was implemented as the first step prior to conducting additional genomic testing.

View Article and Find Full Text PDF

Engineering a DNA polymerase for modifying large RNA at specific positions.

Nat Chem

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

The synthesis of large RNA with precise modifications at specific positions is in high demand for both basic research and therapeutic applications, but efficient methods are limited. Engineered DNA polymerases have recently emerged as attractive tools for RNA labelling, offering distinct advantages over conventional RNA polymerases. Here, through semi-rational designs, we engineered a DNA polymerase variant and used it to precisely incorporate a diverse range of modifications, including base modifications, 2'-ribose modifications and backbone modifications, into desired positions within RNA.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Precise deletion, replacement and inversion of large DNA fragments in plants using dual prime editing.

Nat Plants

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.

Precise manipulation of genome structural variations holds great potential for plant trait improvement and biological research. Here we present a genome-editing approach, dual prime editing (DualPE), that efficiently facilitates precise deletion, replacement and inversion of large DNA fragments in plants. In our experiments, DualPE enabled the production of specific genomic deletions ranging from ~500 bp to 2 Mb in wheat protoplasts and plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!