Long-term erosion by acidic solutions in karst regions leads to continuous deterioration of the physical and mechanical properties at the interfaces of engineering structures, adversely affecting their operational performance. To investigate the degradation patterns of the mechanical properties and corrosion mechanisms of the concrete‒limestone composite (CLC) after exposure to acidic corrosion, three kinds of CLC samples treated with acidic solutions of different pH values were fabricated. Mechanical property analysis was conducted via triaxial compression testing methods. Lemaitre's strain equivalence hypothesis was utilized, and on the basis of the assumption that the strength of rock microelements follows a Weibull distribution, the damage to microelements due to acidic corrosion was combined with compressive failure. The study results indicate that acidic corrosion significantly affects the mechanical properties and failure modes of CLCs. As the pH of the solution decreased from 7 to 5 and then to 3, the peak strengths of the samples decreased by 16.6% and 11.92%, whereas the elastic moduli decreased by 25.36% and 23.13%, respectively. Furthermore, with increasing confining pressure, the peak and residual strengths of the composite significantly improved; the residual strength increased from 8.2 MPa to 86.93 MPa as the confining pressure increased from 0 to 10 MPa. Finally, by introducing a damage constitutive model corrected for postpeak residual strength, the stress‒strain full-process curves of CLCs under different degrees of acidic corrosion were more accurately simulated. The validation results confirm the applicability and accuracy of the established model, providing a theoretical basis and technical support for understanding and predicting the mechanical behavior of limestone-concrete structures in acidic environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729877 | PMC |
http://dx.doi.org/10.1038/s41598-024-83364-w | DOI Listing |
Cardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.
Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Automation and Robotics, CSIC-Universidad Politécnica de Madrid, Arganda del Rey, Madrid, 28500, Spain.
Aluminium and its alloys, especially Al6061, have gathered significant interest among researchers due to its less density, great durability, and high strength. Due to their lightweight properties, the precise machining of these alloys can become expensive through conventional machining operations for intricate products. Therefore, non-traditional machining such as electric discharge machining (EDM) can potentially be opted for the cutting of Al6061.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!