Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Ks and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729911PMC
http://dx.doi.org/10.1038/s41467-024-55672-2DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
factor max
8
selectivity
8
selectivity altering
8
mutations enhance
8
enhance selectivity
8
mutations
4
mutations transcription
4
max allosterically
4
allosterically increase
4

Similar Publications

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Oocyte/zygote/embryo maturation arrest: a clinical study expanding the phenotype of NOBOX variants.

J Assist Reprod Genet

January 2025

Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.

Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.

View Article and Find Full Text PDF

[Molecularly defined renal cell carcinomas].

Pathologie (Heidelb)

January 2025

Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 8-10, 91054, Erlangen, Deutschland.

Background: The latest edition of the WHO classification of urinary and male genital tumours was published in 2022. The revision was based on the newest scientific literature. This article summarizes the updated recommendations regarding the classification of molecularly defined tumours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!