This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis. The molecular mechanism of Colquhounia Root Tablets against RA bone destruction was further revealed using Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. The effects of Colquhounia Root Tablets on macrophage viability was assessed by MTS assay and screened for non-toxic concentrations. A model of receptor activator of nuclear factor-κB(RANKL) induced osteoclast differentiation in vitro was constructed. Colquhounia Root Tablets were used to observe the formation and differentiation of osteoclasts by tartrate-resistant acid phosphatase(TRAP) staining and fibrous actin(F-actin) staining, and the effects of Colquhounia Root Tablets on the changes of core target proteins in the osteoclast differentiation system were detected by immunofluorescence and Western blot. The results showed that the main components of Colquhounia Root Tablets included 14 compounds such as triptolide, celastrol, and triptophenolide. Further network analysis revealed that heat-shock protein 90(HSP90) was the key target gene of Colquhounia Root Tablets for anti-RA bone destruction. TRAP staining and F-actin staining showed that the number and area of TRAP-positive polymorphonuclear cells, as well as actin rings, were reduced in a dose-dependent manner after the intervention of Colquhounia Root Tablets(P<0.01). Western blot results showed that the expression of HSP90 protein was significantly reduced after intervention with Colquhounia Root Tablets at 20 and 40 μg·mL~(-1)(P<0.01); Colquhounia Root Tablets at 10 μg·mL~(-1) could significantly decrease the expression of necrosis factor receptor associated molecule 6(TRAF6) and nuclear factor of activated T cells 1(NFATc1) proteins(P<0.01); moreover, all doses of Colquhounia Root Tablets significantly reduced the expression of osteoclast differentiation marker proteins matrix metalloproteinase 9(MMP9) and cathepsin K(CTSK)(P<0.01).Immunofluorescence results further confirmed that Colquhounia Root Tablets significantly inhibited HSP90 and CTSK levels, as well as NFATc1 activation in osteoblasts. In conclusion, the present study confirmed that Colquhounia Root Tablets may inhibit RANKL-induced osteoclast differentiation by regulating the key target of HSP90, thus exerting an anti-RA bone destruction effect, which will provide a new idea for Colquhounia Root Tablets to prevent and treat bone destruction in rheumatoid arthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20241015.408 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China. Electronic address:
J Sep Sci
November 2024
Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine/Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Colquhounia root tablets (CRT) and Tripterygium hypoglaucum hutch tablets (THHT), two major Tripterygium hypoglaucum hutch (THH) commercial preparations, have been used to treat chronic kidney diseases or rheumatic diseases. However, there have been no reports on the chemical comparison between CRT and THHT, greatly hindering the understanding of their pharmacological difference as well as their rational application in clinical practice. In the present study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry combined with automated data analysis by MS-DIAL software and MS-FLO website was employed to systematically screen and characterize the components in CRT and THHT.
View Article and Find Full Text PDFFront Pharmacol
July 2024
Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China.
Background: Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus that can lead to end-stage renal disease. Colquhounia root tablet (CRT) has shown therapeutic potential in treating DKD, but its efficacy and underlying mechanisms remain to be elucidated.
Methods: A randomized controlled clinical trial was conducted on 61 DKD patients.
J Diabetes Res
August 2023
Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China.
Methods: Rat models of DN were established using streptozotocin (STZ). The primary metabolic parameters were assessed. The pathological changes of the rat kidney were investigated, and RNA sequencing was performed for each group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!