This study presents a novel approach that combines thermogravimetric analysis with time-of-flight mass spectrometry (TG-TOFMS), principal component analysis (PCA), and Kendrick mass defect (KMD) analysis─referred to as TG-PCA-KMD─to investigate molecular-scale structural changes and quantitatively assess the progression of thermo-oxidative degradation in glass fiber reinforced polypropylene (GF/PP). TG-TOFMS enables the simultaneous and sensitive detection of both structural changes due to thermo-oxidative degradation and compositional changes in the filler and matrix. PCA and KMD analysis are crucial for identifying specific ion series derived from the degraded PP matrix in the high-resolution mass spectra obtained through TG-TOFMS. Additionally, PCA fitting was employed to selectively extract information on the degraded components of GF/PP from differential thermogravimetric profiles. Our findings demonstrate the advantages and utility of TG-PCA-KMD in the degradation analysis of composite materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c04630 | DOI Listing |
Polymers (Basel)
January 2025
Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 Col. Chuburná de Hidalgo, Merida 97205, Mexico.
This research addresses the study of the combined effect of two abiotic treatments, a thermo-oxidative treatment followed by a photo-oxidative treatment with ultraviolet light, on the physicochemical properties of commercially available low-density polyethylene films with an oxo-degradant additive (OXOLDPE) and without (LDPE). The change in the oxidized film properties was characterized using FTIR, XRD, TGA, GPC, and SEM analytical techniques. The results indicated that the increment in carbonyl index (CI) and crystallinity percentage (X) was higher for those films that received the combined oxidative treatments compared with those that received only one of them, thermo- or photo-oxidative treatment.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
This study presents a novel approach that combines thermogravimetric analysis with time-of-flight mass spectrometry (TG-TOFMS), principal component analysis (PCA), and Kendrick mass defect (KMD) analysis─referred to as TG-PCA-KMD─to investigate molecular-scale structural changes and quantitatively assess the progression of thermo-oxidative degradation in glass fiber reinforced polypropylene (GF/PP). TG-TOFMS enables the simultaneous and sensitive detection of both structural changes due to thermo-oxidative degradation and compositional changes in the filler and matrix. PCA and KMD analysis are crucial for identifying specific ion series derived from the degraded PP matrix in the high-resolution mass spectra obtained through TG-TOFMS.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China. Electronic address:
Heterogeneous hygrothermal degradation (HHTD) efficiently produces partially depolymerized konjac glucomannan (KGM). However, KGM degrades considerably faster in oxygen-containing air packaging than in oxygen-free vacuum packaging. This study investigated the effects of different atmosphere conditions on the molecular structure of KGM and the radicals involved in its degradation system.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Institute of Inorganic and Analytic Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany.
Polyurethane (PUR) soft foams release malodorous and potentially toxic compounds when exposed to oxidative conditions. Current chamber test methods cannot distinguish between pre-existing volatiles and those formed during oxidation, nor can they assess the formation rates of oxidation products. We subjected PUR soft foam to oxidative treatment in a continuous air flow at 120 °C.
View Article and Find Full Text PDFFront Chem
October 2024
Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Pozzuoli, Italy.
We report on an FTIR study of the thermo-oxidative degradation of a flexible epoxy resin. Different and complementary approaches to the analysis of the spectral data were employed, providing a detailed description of the process in terms of kinetics and mechanisms. A preliminary normal coordinate analysis, based on the DFT method, allowed for a reliable interpretation of the observed spectrum, increasing the amount of available structural information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!