Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability. Still, PHHs from different commercial sources present variability in vitro in several parameters, including viability post-thawing, plating capacity, aggregation potential and culture longevity. Here we combine stirred-tank culture systems, which allow robust aggregation processes, and co-culture approaches with the HepaRG cell line to generate spheroids from cryopreserved PHHs. By employing small-scale stirred-tank culture systems we could cope with the scarce availability and high cost of primary material. In the optimized co-culture conditions we could generate PHH:HepaRG spheroids from 12 donors acquired from 4 different commercial sources. All PHHs showed similar aggregation profiles, forming small compact heterotypic spheroids as early as 3 days in co-culture and were maintained for at least 5 weeks in culture. The heterotypic spheroids maintained the hepatocyte polarization and identity and showed metabolization capacity for 5 main phase I metabolizing enzymes, namely CYP3A4, CYP2C9, CYP1A2, CYP2D6, and CYP2C8. Moreover, the heterotypic spheroids showed the capacity to metabolize a novel compound under clinical development, showing their potential to be employed in drug discovery applications. Overall, we present a robust aggregation strategy for cryopreserved PHHs from different suppliers, applicable for pharmacological and toxicological in vitro research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.slasd.2025.100210 | DOI Listing |
SLAS Discov
January 2025
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:
Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, 68167, Mannheim, Germany.
Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
Cellular context profiling of modification effector proteins is critical for an in-depth understanding of their biological roles in RNA -methyladenosine (mA) modification regulation and function. However, challenges still remain due to the high context complexities, which call for a versatile toolbox for accurate live-cell monitoring of effectors. Here, we propose a demethylation-switchable aptamer sensor engineered with a site-specific mA (DSA-mA) for lag-free monitoring of the mA demethylase FTO activity in living cells.
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal.
Targeted, combinatorial, and immunomodulatory therapies, such as antibody-drug conjugates (ADCs) and immunomodulatory antibodies (Abs), are powerful weapons against tumor cells and immune cells within the tumor microenvironment (TME). Therefore, the evaluation of such therapies should be conducted in pre-clinical models able to recapitulate the complex cellular and molecular crosstalk of the TME. To build-in critical hallmarks of the TME, a breast cancer heterotypic 3D cell model (3D-3) is devised using a microencapsulation strategy with an inert biomaterial (alginate) and agitation-based cultures.
View Article and Find Full Text PDFJ Immunother Cancer
November 2024
Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Cancer Translational Research laboratory, UCLouvain, Brussels, Belgium
Background: Immunogenic cell death (ICD) and ferroptosis have recently emerged as key factors in the anticancer immune response. Among the treatments able to induce ICD and the associated release of danger signals is photodynamic therapy (PDT). Ferroptosis for its part results from lipid peroxidation and is induced by CD8 T cells to kill nearby cancer cells on IFN-γ production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!