Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington disease, pose serious threats to human health, leading to substantial economic burdens on society and families. Despite extensive research, the underlying mechanisms driving these diseases remain incompletely understood, impeding effective diagnosis and treatment. In recent years, growing evidence has highlighted the crucial role of oxidative stress in the pathogenesis of various neurodegenerative diseases. However, there is still a lack of comprehensive reviews that systematically summarize the impact of mitochondrial oxidative stress on neurodegenerative diseases. This review aims to address this gap by summarizing the molecular mechanisms by which mitochondrial oxidative stress promotes the initiation and progression of neurodegenerative disorders. Furthermore, it discusses the potential of antioxidant-based therapeutic strategies for the treatment of these diseases. By shedding light on the role of mitochondrial oxidative stress in neurodegenerative diseases, this review not only serves as a valuable reference for further research on the disease mechanisms, but also offers novel perspectives for the treatment of these disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2025.102660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!