Prophylaxis by a reversible cholinesterase inhibitor and the treatment NMDA receptor antagonists as combinatorial countermeasure against nerve agent poisoning in mice model.

Chem Biol Interact

Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic. Electronic address:

Published: January 2025

The current pharmacological pretreatment and medical treatment of nerve agent poisoning is an insufficiently addressed medical task. The prophylactic efficacy of a novel compound acting dually as an acetylcholinesterase inhibitor and NMDA receptor antagonist (K1959) and the therapeutic efficacy of a novel NMDA receptor antagonist (K2060) were evaluated in the NMRI mice model of nerve agent poisoning by tabun, soman and sarin. Their added value to the standard antidotal treatment (a combination of oxime reactivator and atropine) was also analyzed. The novel dually acting prophylactic drug (K1959) did not bring any additional benefit compared to the commonly used pyridostigmine. By contrast, an increase in the therapeutic efficacy of classic antidotal treatment was observed when the novel NMDA receptor antagonist (K2060) was combined with commonly used antidotes (oxime reactivator in combination with atropine). This novel combination reduced the acute toxicity of tabun, soman, and sarin more than two-fold, four-fold, and five-fold, respectively. These results highlight the possibility of NMDA antagonists such as K2060 as a supportive drug for the classic therapy of organophosphorus poisoning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2025.111386DOI Listing

Publication Analysis

Top Keywords

nmda receptor
16
nerve agent
12
agent poisoning
12
receptor antagonist
12
mice model
8
efficacy novel
8
therapeutic efficacy
8
novel nmda
8
antagonist k2060
8
tabun soman
8

Similar Publications

Purpose Of Review: Complex Regional Pain Syndrome (CRPS) is a neuropathic pain disorder characterized by pain disproportionate to the inciting event that is constant for an extended duration. Numerous treatment options for this condition have been explored with unsatisfactory results in many cases. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist typically used as an anesthetic and analgesic, presents a promising potential treatment for CRPS in patients who fail to respond to traditional therapies.

View Article and Find Full Text PDF

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

Prophylaxis by a reversible cholinesterase inhibitor and the treatment NMDA receptor antagonists as combinatorial countermeasure against nerve agent poisoning in mice model.

Chem Biol Interact

January 2025

Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic. Electronic address:

The current pharmacological pretreatment and medical treatment of nerve agent poisoning is an insufficiently addressed medical task. The prophylactic efficacy of a novel compound acting dually as an acetylcholinesterase inhibitor and NMDA receptor antagonist (K1959) and the therapeutic efficacy of a novel NMDA receptor antagonist (K2060) were evaluated in the NMRI mice model of nerve agent poisoning by tabun, soman and sarin. Their added value to the standard antidotal treatment (a combination of oxime reactivator and atropine) was also analyzed.

View Article and Find Full Text PDF

Tumor cell-derived N-acetyl-aspartyl-glutamate reshapes the tumor microenvironment to facilitate breast cancer metastasis.

Sci Bull (Beijing)

December 2024

Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!