Anomalous pumping in the non-Hermitian Rice-Mele model.

J Phys Condens Matter

School of Physical Sciences, NISER, Jatni, Bhubaneswar, 752050, INDIA.

Published: January 2025

We study topological charge pumping (TCP) in the Rice-Mele (RM) model with irreciprocal hopping. The non-Hermiticity gives rise to interesting pumping physics, owing to the presence of skin effect and exceptional points. In the static one-dimensional (1D) RM model, we find two independent tuning knobs that can drive the topological transition, namely, non-Hermitian parameter $\gamma$ and system size $N$. To elucidate the system-size dependency, we use a finite-size generalized Brillouin zone (GBZ) scheme to show that the edge modes can be distinguished from the non-hermiticity induced skin modes. Moreover, this scheme can capture the state pumping of topological edge modes as a function of $\gamma$ in the static 1D RM model and it further provides insight into engineering novel gapless exceptional edge modes with the help of adiabatic drive. Furthermore, we show that the standard topological pumping due to the adiabatic and periodic variation of the model parameters survives even with finite $\gamma$. However, we observe that it depends upon the driving protocols and strength of the non-Hermiticity ($\gamma$). With increasing $\gamma$, the adiabatic pumping for non-trivial protocols is destroyed first and then re-emerges as an anomalous pumping which does not have any Hermitian counterpart. Additionally, we observe that even a trivial adiabatic protocol can give rise to pumping as opposed to the Hermitian system. This is attributed to the inherent point gap physics of non-Hermitian system which we explain by reformulating a non-Bloch topological invariant for the 1+1D RM model. This invariant explains the number of pumped charges (in each period) for all the driving protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ada9afDOI Listing

Publication Analysis

Top Keywords

edge modes
12
anomalous pumping
8
rice-mele model
8
driving protocols
8
pumping
7
model
6
topological
5
$\gamma$
5
pumping non-hermitian
4
non-hermitian rice-mele
4

Similar Publications

Evaluation of charge summing correction in CdTe-based photon-counting detectors for breast CT: performance metrics and image quality.

J Med Imaging (Bellingham)

January 2025

U.S. Food and Drug Administration, Office of Science and Engineering Labs, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

Purpose: We evaluate the impact of charge summing correction on a cadmium telluride (CdTe)-based photon-counting detector in breast computed tomography (CT).

Approach: We employ a custom-built laboratory benchtop system using the X-THOR FX30 0.75-mm CdTe detector (Varex Imaging, Salt Lake City, Utah, United States) with a pixel pitch of 0.

View Article and Find Full Text PDF

Failure modes and interaction mechanisms of tunnel under active landslide conditions.

Sci Rep

January 2025

China Academy of Railway Sciences Co. Ltd, Beijing, 100081, China.

The construction of tunnels can easily trigger the reactivation of old landslide bodies, posing a threat to the transportation safety. In this study, using methods such as engineering geological investigation, slope deformation monitoring, deep displacement monitoring, and numerical simulation, the interaction between landslides and tunnels was investigated from the perspective of landslide deformation and failure characteristics. The Walibie Tunnel (WLBT) of Shangri-La to Lijiang (XL) expressway was taken as an example.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations.

View Article and Find Full Text PDF

Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!