Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Published: January 2025

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability. The catalyst achieved a specific catalytic rate of 134 min g L for p-nitrophenol (PNP) hydrogenation, outperforming many noble metal-based catalysts. Experimental and theoretical analyses identified the Co-N-S single-atom moiety as the primary active site, demonstrating remarkable structural stability. Axial sulfur coordination was found to fine-tune the electronic state of the central Co atom, mitigating the overbinding of reaction intermediates and enhancing PNP conversion efficiency. In contrast, CoS nanoparticles exhibited limited recyclability, with agglomeration, cobalt hydroxide formation, and dissolution observed during repeated use. This study presents a highly efficient catalyst for nitroaromatics conversion and provides a foundational framework for understanding the durability and mechanistic roles of cobalt-based active sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.049DOI Listing

Publication Analysis

Top Keywords

nitroaromatics conversion
8
cos nanoparticles
8
efficacy durability
4
durability cobalt
4
cobalt sulfide
4
sulfide nanoparticles
4
nanoparticles axial
4
axial sulfur-coordinated
4
sulfur-coordinated cobalt
4
single-atom
4

Similar Publications

Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.

View Article and Find Full Text PDF

6-Amino-5-nitropyridin-2-ol (Z), a nitroaromatic compound and a base for Hachimoji nucleic acids, holds significant potential in expanding the genetic alphabet, as well as in synthetic biology and biotechnology. Despite its promising applications, the spectral characterization and photoinduced properties of Z have remained largely unexplored until now. This study presents a comprehensive investigation into its excited state dynamics in various solvents, utilizing state-of-the-art ultrafast broadband time-resolved fluorescence and transient absorption spectroscopy, complemented by computational methods.

View Article and Find Full Text PDF

Nitroaromatic compounds are found in brown carbon aerosols emitted to the Earth's atmosphere by biomass burning, and are important organic chromophores for the absorption of solar radiation. Here, transient absorption spectroscopy spanning 100 fs-8 μs is used to explore the pH-dependent photochemical pathways for aqueous solutions of -nitrophenol, chosen as a representative nitroaromatic compound. Broadband ultrafast UV-visible and infrared probes are used to characterize the excited states and intermediate species involved in the multistep photochemistry, and to determine their lifetimes under different pH conditions.

View Article and Find Full Text PDF

Constructing heterostructured photocatalysts with highly exposed active sites proves to be an efficient strategy to improve the photocatalytic performance of bismuth-based photocatalysts. In this work, active site-exposed BiWO@BiOCl (BWO@BOC) heterostructure composites based on two bismuth-based materials were fabricated by an growth method for improving the photocatalytic hydrogenation of 4-aniline (4-NA) to -phenylenediamine (PPD). BWO@BOC exhibited enhanced photoactivity for 4-NA hydrogenation compared to pure BWO and BOC.

View Article and Find Full Text PDF

The abuse and excessive discharge of organic pollutants such as nitroaromatic compounds (NACs) have become a hot topic of concern for all humanity and society, and the development of fast, effective, and targeted technical means for detecting NACs also faces many challenges. Here, we reported a strontium-based metal-organic framework (MOF) {[Sr(tcbpe)(HO)]} (), in which tcbpe represents deprotonated 4',4‴,4″‴,4‴‴-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'biphenyl]-4-carboxylic acid)). In , Sr-O polyhedron and deprotonated tcbpe ligand have a staggered connection to form a self-assembled three-dimensional network structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!