Lateral flow assay with automatic signal amplification based on delayed substrate release.

Talanta

State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.

Published: January 2025

The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated. In this work, we designed a LFA based on delayed substrate release (SGF-LFA), in which a commercialized glass fiber membrane embedded with substrate (SGF) was fixed at the sample pad. The SGF could automatically execute substrate delivery and catalysis, thus eventually achieving a one-step LFA operation for the nucleic acid detection of influenza A virus H1N1. In this SGF-LFA, 3,3 '- diaminobenzidine (DAB) was oxidized and deposited, producing a strong signal amplification under the catalysis of Au@PtNP nanozyme. The SGF-LFA could detect the nucleic acid of H1N1, with a linear range of 0.02-50 nM and a limit of detection (LOD) as low as 0.02 nM, which was 25-fold lower than that of the nanozyme-LFA before catalysis. In addition, the analytical performance was close to that of a manual operation mode of catalysis amplification. The application of SGF-LFA for detecting the H1N1 nucleic acid in serum samples obtained a recovery rate of 96 %-102.7 %, indicating that SGF-LFA has great potential in point-of-care testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2025.127557DOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
lateral flow
8
flow assay
8
signal amplification
8
based delayed
8
delayed substrate
8
substrate release
8
substrate
5
catalysis
5
sgf-lfa
5

Similar Publications

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high.

View Article and Find Full Text PDF

Shotgun metagenomics offers a broad detection of pathogens for rapid blood stream infection of pathogens but struggles with often low numbers of pathogens combined with high levels of human background DNA in clinical samples. This study aimed to develop a shotgun metagenomics protocol using blood spiked with various bacteria and to assess bacterial DNA extraction efficiency with human DNA depletion. The Blood Pathogen Kit (Molzym) was used to extract DNA from EDTA-whole blood (WB) and plasma samples, using contrived blood specimens spiked with bacteria for shotgun metagenomics diagnostics via Oxford Nanopore sequencing and PCR-based library preparation.

View Article and Find Full Text PDF

Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0-100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results.

View Article and Find Full Text PDF

Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!