Sex Differences in Aortic Valve Inflammation and Remodeling in Chronic Severe Aortic Regurgitation.

Am J Physiol Heart Circ Physiol

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Published: January 2025

Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.5% female) with severe chronic AR were included. AVs were analyzed by imaging, histological and molecular biology techniques (ELISA, RT-PCR). VICs and VECs isolated from patients with AR were characterized and further treated with transforming growth factor (TGF)-β. Anatomically, male had smaller index aortic dimensions and greater AV thickness. Proteome profiler analyzes in AVs (n=40/sex) evidenced higher expression of inflammatory markers in male and that was further validated (interleukins, chemokines). Histological composition showed higher expression of inflammatory mediators and collagen thick fibers in AVs from male. Male VICs and VECs secreted higher levels of inflammatory markers than female cells. Interestingly, male VICs produced higher amounts of collagen type I and lower fibronectin and aggrecan, whereas male VECs secreted lower decorin. TGF-β exclusively enhanced inflammation in male VICs, and decorin and aggrecan in female VICs. Compared to male, AVs from female were thinner, less inflamed and fibrotic. VIC seem to be the key cell type responsible for the sex-differences. Valvular inflammation associated with an active remodeling process could be a key pathophysiological process involved in AR.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00645.2024DOI Listing

Publication Analysis

Top Keywords

male vics
12
male
9
sex differences
8
aortic valve
8
valve inflammation
8
inflammation remodeling
8
aortic regurgitation
8
vics vecs
8
higher expression
8
expression inflammatory
8

Similar Publications

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Sex Differences in Aortic Valve Inflammation and Remodeling in Chronic Severe Aortic Regurgitation.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.

View Article and Find Full Text PDF

Background: Calcific aortic valve disease (CAVD) is a highly prevalent disease, especially in the elderly population, but there are no effective drug therapies other than aortic valve repair or replacement. CAVD develops preferentially on the fibrosa side, while the ventricularis side remains relatively spared through unknown mechanisms. We hypothesized that the fibrosa is prone to the disease due to side-dependent differences in transcriptomic patterns and cell phenotypes.

View Article and Find Full Text PDF

Background And Aims: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process.

Methods: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors.

View Article and Find Full Text PDF

Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering.

J Nanobiotechnology

June 2024

Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430000, China.

Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!