Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.0]octa-2,4,7-triene (BOT). Contrary to previous reports, all relevant fluxes of the pairing density must be described in terms of fold unfolding. The transannular ring opening in the second step highlights characteristics indicative of a cusp-type catastrophe, facilitating a direct comparison with fold features. This fact underscores the critical role of density symmetry persistence near topographical events in determining the type of bifurcation. A fold-cusp unified model for scaling the polarity of chemical bonds is proposed, integrating ubiquitous reaction classes such as isomerization, bimolecular nucleophilic substitution, and cycloaddition. The analysis reveals that bond polarity index (BPI) values within the [0, 10] au interval correlate with cusp unfolding, whereas fold spans over a broader [10, ∞) au spectrum. These insights emphasize that the cusp polynomial is suitable for describing chemical processes involving symmetric electron density distributions, particularly those involving homolytic bond cleavages; in contrast, fold characterizes most chemical events.
Methods: Geometry optimization and frequency calculations were conducted using various DFT functionals. In line with recent findings concerning the rigorous application of BET, the characterization of bond formations and scissions via unfoldings was carried out by carefully monitoring the determinant of the Hessian matrix at all potentially degenerate CPs and their relative distance. The computed gas-phase activation enthalpies strongly align with experimental values, stressing the adequacy of the chosen levels of theory in describing the ELF topography along the IRC. The BPI was determined using the methodology proposed by Allen and collaborators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-024-06229-z | DOI Listing |
Chemphyschem
January 2025
Southern Methodist University, Chemistry, 3251 Daniel Ave, 75275, Dallas, UNITED STATES.
We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.
View Article and Find Full Text PDFPolarity reversal, or "umpolung", is a widely acknowledged strategy to allow organic functional groups amenable to react in alternative ways to the usual preference set by their electronic features. In this article, we demonstrate that cyclohexyne umpolung, realized through complexation to zirconocene, makes the small strained cycloalkyne amenable to C-F bond functionalisation. Such strong bond activation chemistry is unprecedented in "free" aryne and strained alkyne chemistry.
View Article and Find Full Text PDFMagn Reson Chem
January 2025
Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.
We present a DFT-PCM NMR study of 3-indoleacetic acid (3-IAA), used as a working example, including explicit solvent molecules, named PCM-nCHCl, PCM-nDMSO (n = 0, 2, 4, 8, 14, 20, and 25), to investigate the dimer formation in solution. Apart from well-known cyclic (I) and open (II) acetic acid (AA) dimers, two new structures were located on DFT-PCM potential energy surface (PES) for 3-IAA named quasicyclic A (III) and quasicyclic B (IV), the last one having N-H…O hydrogen bond (instead of O-H…O). In addition, four other structures having π-π type interactions named V, VI, VII, and VIII were also obtained completing the sample on the PES.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Minhou, Fujian 350108, China. Electronic address:
Covalent triazine frameworks (CTFs) are emerging as promising platform for photocatalysis, yet their highly symmetric structure leads to significant charge recombination. Herein, we employed a facile non-metallic boron (B) modification with precisely controlled doping site to introduce asymmetric local electron distribution in CTFs, achieving a 15-fold activity enhancement for CO-to-CH conversion. Calculations including frontier orbitals, dipole moments and molecular electrostatic potentials firmly demonstrated the formation of localized polarized electron regions in CTF-1 via B doping.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
This study explores the green extraction of phenolic antioxidants from fruit using choline-chloride-based deep eutectic solvents (DESs) as an eco-friendly alternative to conventional solvents. Sixteen DESs, prepared by combining choline chloride with various hydrogen bond donors, were characterized for their physical properties, including viscosity, polarity, and pH, and applied to extract phenolics from . High-performance liquid chromatography (HPLC) quantified key phenolic compounds, including neochlorogenic and chlorogenic acid, quercetin derivatives, and cyanidin derivatives, as well as total phenolic acids, flavanols, and anthocyanins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!