Auxotrophic mutants of Halobacterium volcanii generated by chemical mutagenesis were used to demonstrate a native genetic transfer system in this extremely halophilic member of the class Archaeobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC219016PMC
http://dx.doi.org/10.1128/jb.162.1.461-462.1985DOI Listing

Publication Analysis

Top Keywords

genetic transfer
8
halobacterium volcanii
8
transfer halobacterium
4
volcanii auxotrophic
4
auxotrophic mutants
4
mutants halobacterium
4
volcanii generated
4
generated chemical
4
chemical mutagenesis
4
mutagenesis demonstrate
4

Similar Publications

The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.

View Article and Find Full Text PDF

Structure and metabolic function of spatiotemporal pit mud microbiome.

Environ Microbiome

January 2025

Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.

Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.

View Article and Find Full Text PDF

Comprehensive analysis of 111 Pleuronectiformes mitochondrial genomes: insights into structure, conservation, variation and evolution.

BMC Genomics

January 2025

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China.

Background: Pleuronectiformes, also known as flatfish, are important model and economic animals. However, a comprehensive genome survey of their important organelles, mitochondria, has been limited. Therefore, we aim to analyze the genomic structure, codon preference, nucleotide diversity, selective pressure and repeat sequences, as well as reconstruct the phylogenetic relationship using the mitochondrial genomes of 111 flatfish species.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Background: Mobile devices offer an emerging opportunity for research participants to contribute person-generated health data (PGHD). There is little guidance, however, on how to best report findings from studies leveraging those data. Thus, there is a need to characterize current reporting practices so as to better understand the potential implications for producing reproducible results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!