Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM. Five publicly available gene expression datasets were analyzed to identify differentially expressed genes (DEGs) associated with GBM. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify GBM-related gene modules. Further, gene set enrichment and variation analyses were conducted to explore the biological pathways involved. The machine learning models were evaluated using Receiver Operating Characteristic (ROC) curves and confusion matrices to assess their predictive accuracy, with the best-performing model validated across external datasets. MR analysis was performed to establish causal relationships between genetically predicted gene expression levels and GBM outcomes.
Results: The study identified 286 DEGs between GBM and adjacent normal tissues across five datasets. WGCNA highlighted the yellow module as the most relevant to GBM, containing key genes such as KLHL3, FOXO4, and MAP1A. Of the 113 machine learning models tested, Ridge regression achieved the highest area under the curve (AUC) of 0.92, demonstrating robust predictive accuracy. Validation using external datasets confirmed the model's reliability, with a classification accuracy of 89.5% in the training set and 85.3% in the validation sets. MR analysis provided strong evidence of a causal relationship between the expression levels of the identified genes and GBM risk.
Conclusions: This study demonstrates the power of combining machine learning and Mendelian Randomization to uncover novel genetic markers for GBM. The identified genes offer promising potential as biomarkers for GBM diagnosis and therapy, providing new avenues for personalized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730047 | PMC |
http://dx.doi.org/10.1007/s12672-025-01792-0 | DOI Listing |
JMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.
Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.
Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.
Proc Natl Acad Sci U S A
February 2025
Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg 72076, Germany.
Large language models (LLMs) are being increasingly incorporated into scientific workflows. However, we have yet to fully grasp the implications of this integration. How should the advancement of large language models affect the practice of science? For this opinion piece, we have invited four diverse groups of scientists to reflect on this query, sharing their perspectives and engaging in debate.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFPLoS One
January 2025
School of Emergency Management, Institute of Disaster Prevention, Sanhe, Hebei, China.
With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!