Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction. The obtained nanospheres consist of ultra-thin silicon stripes embedded in a continuous carbon framework, forming a carbon-protected silicon-based anode material suitable for lithium-ion batteries. The Si@C nanospheres exhibit excellent lithium-ion storage performance. After 1000 cycles at a current density of 0.5 A g, it retains an impressive capacity of 1363 mA h g, which is more than three times the theoretical capacity of graphite and 182% of the first cycle capacity after activation (750 mA h g). This work not only provides new possibilities for the application of POSS but also broadens the design and application of advanced silicon-based anode materials in the energy storage field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt03185gDOI Listing

Publication Analysis

Top Keywords

lithium-ion storage
12
storage performance
12
silicon-based anode
12
anode materials
12
excellent lithium-ion
8
lithium-ion batteries
8
lithium-ion
5
nano-confined si@c
4
si@c composites
4
composites excellent
4

Similar Publications

[This corrects the article DOI: 10.1039/C9RA10485B.].

View Article and Find Full Text PDF

Effects of porous hedgehog-like morphology and graphene oxide on the cycling stability and rate performance of CoO/NiO microspheres.

Nanoscale Horiz

January 2025

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200438, P. R. China.

A porous hedgehog-like CoO/NiO/graphene oxide (denoted as PHCNO/GO) microsphere was prepared by a facile solvothermal method, followed by an annealing treatment under argon atmosphere. Benefiting from the thin CoO/NiO nanosheets with a large specific surface area, abundant pores distributed between the CoO/NiO nanosheets, and GO firmly wrapped around the surface of PHCNO microspheres, the PHCNO/GO microspheres showed excellent lithium storage performance. The CoO/NiO nanosheets provided numerous active sites, achieving a high reversible specific capacity.

View Article and Find Full Text PDF

High Entropy Fine-Tuning Achieves Fast Li Kinetics in High-Performance Co-Free High-Ni Layered Cathodes.

Adv Mater

January 2025

Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.

Co-free high-Ni layered cathode materials LiNiMeO (Me = Mn, Mg, Al, etc.) are a key part of the next-generation high-energy lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the hindered Li kinetics and the high reactivity of Ni result in poor rate performance and unsatisfied cycling stability.

View Article and Find Full Text PDF

Unstable solid-electrolyte interphase (SEI) film resulting from chemically active surface state and huge volume fluctuation limits the development of Si-based anode materials in lithium-ion batteries. Herein, a photo-initiated polypyrrole (PPy) coating is manufactured on Si nanoparticles to guide the in situ generation of PPy-integrated hybrid SEI film (hSEI). The hSEI film shows excellent structure stability and optimized component composition for lithium storage.

View Article and Find Full Text PDF

Remaining useful life (RUL) prediction is a crucial aspect of the prognostics health management of lithium-ion batteries (LIBs). Owing to the influence of resampling technology, particle degradation is often observed in the particle filter-based RUL prediction of LIBs, resulting in a low prediction accuracy and large uncertainty. In this paper, a novel particle flow filter with the grey model method (GM-PFF) is proposed to forecast the RUL and state of health of batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!