The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch. The IMHB allowed for specific extraction of monkeypox virus (MPXV) directly from lesional skin and virus detection in both electrochemical and colorimetric modes. A bifunctional signal probe 3,3',5,5'-tetramethylbenzidine (TMB) was loaded in a hydrogel patch, providing measurable signals for dual-mode sensing. Additionally, a control area was designed in this platform to collect blank samples from normal skin, enabling ratio analysis and quality control functions. This dual-mode ratiometric sensing strategy exhibited a wide range of 10-1000 ng/mL for MPXV A29 protein, with detection limits of 0.1632 and 0.3017 ng/mL for electrochemical and colorimetric assay, respectively. The developed IMHB platform provides a novel way for rapid on-site determination of MPXV, demonstrating the potential for quick intervention in the early stages of infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03835DOI Listing

Publication Analysis

Top Keywords

hydrogel biosensor
8
dual-mode sensing
8
monkeypox virus
8
a29 protein
8
virus detection
8
imhb platform
8
hydrogel patch
8
electrochemical colorimetric
8
integrated microneedles
4
hydrogel
4

Similar Publications

The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use.

Biosensors (Basel)

January 2025

Department of Biomedical Laboratory Science, Daegu Health College, Chang-ui Building, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea.

Point-of-care (POC) use is one of the essential goals of biosensing platforms. Because the increasing demand for testing cannot be met by a centralized laboratory-based strategy, rapid and frequent testing at the right time and place will be key to increasing health and safety. To date, however, there are still difficulties in developing a simple and affordable, as well as sensitive and effective, platform that enables POC use.

View Article and Find Full Text PDF

Polydiacetylene (PDA) Embedded Polymer-Based Network Structure for Biosensor Applications.

Gels

January 2025

Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Biosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions.

View Article and Find Full Text PDF

Intrinsic fluorescence hydrogels for ON/OFF screening of antidiabetic drugs: assessing α-glucosidase inhibition by acarbose.

J Mater Chem B

January 2025

Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

Diabetes remains one of the most prevalent chronic diseases globally, significantly impacting mortality ratetables. The development of effective treatments for controlling glucose level in blood is critical to improve the quality of life of patients with diabetes. In this sense, smart optical sensors using hydrogels, responsive to external stimuli, have emerged as a revolutionary approach to diabetes care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!