Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes. Specifically, by recording Ca fluorescence at 2000 frames/s from multiple sites both in the CA3 and in the CA1 regions, we observed that the signal measured near the stimulating electrode, positioned on the mossy fibre pathway, was not blocked by perfusion with 10 μM NBQX and 50 μM AP5, preventing excitatory synaptic transmission. In contrast, this signal was fully blocked by additional perfusion with 1 μM tetrodotoxin, inhibiting voltage-gated Na channels and neuronal action potentials. We also present recordings obtained in the presence of 10 μM of the GABA receptor antagonist bicuculline, or of 50 μM of the voltage-gated K channel inhibitor 4-aminopyridine, exhibiting a wide propagation of the signal from CA3 to CA1 regions under conditions that mimic epileptic seizures. Altogether, while Fluo-4 AM remains a preferable indicator for reporting Ca signals from astrocytes at slow temporal resolution, we demonstrated that it can be also utilised for analysing fast neuronal network activity elicited by electrical stimulation in brain slices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727817PMC
http://dx.doi.org/10.1111/ejn.16657DOI Listing

Publication Analysis

Top Keywords

fast neuronal
12
brain slices
12
temporal resolution
8
ca3 ca1
8
ca1 regions
8
neuronal calcium
4
calcium signals
4
signals brain
4
slices
4
slices loaded
4

Similar Publications

Unlabelled: Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin.

Vitam Horm

January 2025

Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States. Electronic address:

The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.

View Article and Find Full Text PDF

Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.

Biomolecules

January 2025

Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China.

The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!