In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (. Sm2Ni) = Tb (. Tb2Ni), HCO = oxalic acid; HL = ethylene diamine tetraacetic acid]. The structural analysis reveals that Ln2Ni compounds feature a CO-templated wavy-shaped two-dimensional layer. Then, adjacent wavy-shaped layers are further aggregated by CO anions, resulting in an innovative three-dimensional metal-organic framework. Magnetization analysis revealed that Gd2Ni exhibits a favorable -Δmaxm of 38.0 J kg K at 2.0 K for 7.0 T. In addition, the effect of weak ferromagnetic exchange interactions in Gd2Ni contributes to a decent magnetocaloric effect at low fields (-Δ = 25.1 J kg K at 2.0 T for 2.0 K and -Δ = 14.5 J kg K at 1.0 T for 2.0 K), outperforming most 3d-4f heterometallic compounds reported previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt03056g | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.
View Article and Find Full Text PDFInorg Chem
January 2025
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.
View Article and Find Full Text PDFMolecules
January 2025
Dipartimento di Chimica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.
The main categories of transition metal-mercury heterometallic compounds are briefly summarized. The attention is focused on complexes and clusters where the {Hg-Y} fragment, where Y represents a halide atom, interacts with transition metals. Most of the structurally characterized derivatives are organometallic compounds where the transition metals belong to the Groups 6, 8, 9 and 10.
View Article and Find Full Text PDFJ Inorg Biochem
March 2025
Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Due to their diverse chemical properties and high ability to interact with biological molecules and cellular processes, transition metal-based compounds have emerged as promising candidates for cancer therapy. Iron complexes are among them, however, there is a gap in the comprehensive analysis of heterometallic iron complexes in the anticancer field. This review aims to fill this gap by summarizing recent progress in the study of Fe(II) and Fe(III) heterobimetallic complexes for anticancer applications and to gather important insights and future perspectives, with special emphasis on their theranostic capabilities.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China.
With the development of the nuclear industry, the risk of elements that are difficult to degrade in nuclear fission has been gradually increasing. Therefore, the efficient capture of iodine (I) has attracted considerable attention in recent years. The aluminum cluster-based metal framework materials show great advantage in iodine adsorption due to the designable pore sizes, excellent physicochemical stability, and cheap raw materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!