Evaluating the local immune microenvironment of the canine nasal cavity can be important for investigating normal tissue health and disease conditions, particularly those associated with local inflammation. We have optimized a technique to evaluate the local nasal immune microenvironment of dogs via serial nasal lavage. Briefly, with dogs under anesthesia and positioned in sternal recumbency, prewarmed sterile saline is flushed into the affected nostril using a flexible soft rubber catheter. The fluid backflow is collected into conical tubes, and this process is repeated. The fluids containing dislodged cells and proteins are pooled, and the pooled nasal lavage samples are filtered through a cell strainer to remove large debris and mucus. Samples are centrifuged and the cell pellets are isolated for analysis. Once the samples have been processed, analyses that may follow nasal lavage include flow cytometry, transcriptomic analysis of cells via bulk or single-cell RNA seq, and/or quantification of cytokines present in the lavage fluid.

Download full-text PDF

Source
http://dx.doi.org/10.3791/67577DOI Listing

Publication Analysis

Top Keywords

immune microenvironment
12
nasal lavage
12
canine nasal
8
nasal immune
8
nasal
6
saline lavage
4
lavage sampling
4
sampling canine
4
microenvironment evaluating
4
evaluating local
4

Similar Publications

Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Transcriptome of Anaplastic Thyroid Cancer Reveals Two Molecular Subtypes with Distinct Tumor Microenvironment and Prognosis.

Thyroid

January 2025

Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Republic of Korea.

Although patients with anaplastic thyroid cancer (ATC) generally have a poor prognosis and there are currently no effective treatment options, survival and response to therapy vary between patients. Genomic and transcriptomic profiles of ATC have been reported; however, a comprehensive study of the tumor microenvironment (TME) of ATC is still lacking. This study aimed to elucidate the TME characteristics associated with ATC and their prognostic implications.

View Article and Find Full Text PDF

Malignant neoplasms arise within a region of chronic inflammation caused by tissue injuries. Inflammation is a key factor involved in all aspects of tumorigenesis including initiation, proliferation, invasion, angiogenesis, and metastasis. Interleukin-1 (IL-1) plays critical functions in tumor development with influencing the tumor microenvironment and promoting cancer progression.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!