Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1. Surprisingly, the FeVO-5 cathode delivers an impressive capacity of up to 431 mAh g at 0.6 A g, excellent rate capability (252.3 mAh g, 80 A g), and superior long-term cycling performance (95% capacity retention over 12 000 cycles at 40 A g). This work presents a reasonable strategy for engineering heterostructure materials for AZB application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04752 | DOI Listing |
Nano Lett
January 2025
Department of Chemistry, Fudan University, Shanghai 200433, China.
Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India. Electronic address:
The study presents the fabrication and superior photoactivity of a ternary g-CN/FeVO/AgBr heterojunction nanocomposite, synthesized via a chemical precipitation method for effective degradation of tetracycline (TC) and Victoria Blue (VB) dye under light illumination. The morphology and the crystal size of the synthesized nanocomposite were characterized by using FESEM and XRD and the calculated grain size (100.39 nm) is larger than the crystal size (48.
View Article and Find Full Text PDFACS Nano
December 2024
Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China.
Bioinspired light-driven ion transport in two-dimensional (2D) nanofluidics offers exciting prospects for solar energy harvesting. Current single-component nanofluidic membranes often suffer from low light-induced driving forces due to the easy recombination of photogenerated electron-hole pairs. Herein, we present a Pt@WS Mott-Schottky heterojunction-based 2D nanofluidic membrane for boosting light-driven active ion transport and solar enhanced ionic power harvesting.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China. Electronic address:
Bisphenol A (BPA) is considered to be a typical endocrine-disrupting compounds (EDCs), and its widespread existence in nature is quite harmful to human and ecological environment. The S-scheme n-n heterojunction composite (BiOCO/BiOS) was constructed via a facile two-step chemical precipitation method for the removal of BPA in water environment. The optimal composite catalyst exhibited outstanding catalytic activity for BPA, obtaining approximately 0.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!