Fermi resonance is a common phenomenon, and a hidden caveat exists in the applications of infrared probes, causing spectral complication and shorter vibrational lifetime. In this work, using the cyanotryptophan (CNTrp) side chain model compound 5-cyanoindole (CN-5CNI), we performed Fourier transform infrared spectroscopy (FTIR) and two-dimensional infrared (2D-IR) spectroscopy on unlabeled CN-5CNI and its isotopically labeled substituents (CN-5CNI, CN-5CNI, CN-5CNI) and demonstrated the existence of Fermi resonance in 5CNI. By constructing the Hamiltonian and simulating 2D-IR spectra, we show that the distinct Fermi resonance 2D-IR patterns in various isotope substituents are determined by the quantum mixing consequences at the = 1 state, as well as the = 2 state, where the Fermi coupling and anharmonicity play a crucial role. Our work provides important insights into the elusive type of Fermi resonance, where the coupling is much smaller than the anharmonicity, which is termed the weak coupling case.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c08307 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!