Background: Bipolar disorder (BD) has been associated with impaired cellular resilience. Recent studies have shown abnormalities in the unfolded protein response (UPR) in BD. The UPR is the cellular response to endoplasmic reticulum (ER) stress. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a trophic factor, decreases ER stress by modulating the UPR. The objective of this study is to investigate the MANF-ER stress pathway in BD and major depressive disorder (MDD) compared to healthy controls (HC).

Methods: MANF protein concentration and MANF and GRP78 gene expression were assessed in peripheral blood from individuals with BD, MDD and HC (protein: 40 BD, 55 MDD, 55 HC; gene expression: 52 BD, 61 MDD, 69 HC). MANF protein and gene expression along with GRP78 gene expression were also analyzed in postmortem brain tissue (20 BD, 20 MDD, 19 HC). MANF protein was quantified using an ELISA assay while quantitative polymerase chain reaction was used for MANF and GRP78 gene expression.

Results: Peripheral MANF protein levels were reduced in individuals with BD in a depressive state compared to controls (p=0.031) and euthymic BD participants (p=0.013). No significant differences in MANF or GRP78 gene expression were observed in BD irrespective of mood state, or MDD compared to HC (all p>0.05). No differences were observed regarding MANF/GRP78 protein or gene expression levels in postmortem tissue (p>0.05).

Conclusion: Individuals with BD who were in an acute depressive phase were found to have reduced peripheral MANF levels potentially signifying abnormal UPR and supporting the notion that BD is associated with increased ER stress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ijnp/pyaf004DOI Listing

Publication Analysis

Top Keywords

gene expression
24
manf protein
16
grp78 gene
16
manf grp78
12
manf
9
reticulum stress
8
stress pathway
8
mdd compared
8
mdd manf
8
protein gene
8

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!