Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.2, and BA.4/5) by using an untargeted four-dimensional data-independent acquisition (4D-DIA)-based proteomics approach. We identified 137 proteins whose abundance levels differed between the COVID-19 positive and negative groups. Salivary signatures were mainly enriched in ribosomal proteins, linked to mRNAviral translation, protein synthesis and processing, immune innate, and antiapoptotic signaling. The higher abundance of 14-3-3 proteins (YWHAG, YWHAQ, YWHAE, and SFN) in saliva, first reported here, may be associated with increased infectivity and improved viral replicative fitness. We also identified seven proteins (ACTN1, H2AC2, GSN, NDKA, CD109, GGH, and PCYOX) that yielded comprehension into Omicron infection and performed outstandingly in screening patients with COVID-19 in a hospital setting. This panel also presented an enhanced anti-COVID-19 and anti-inflammatory signature, providing insights into disease severity, supported by comparisons with other proteome data sets. The salivary signature provided valuable insights into the host's response to SARS-CoV-2 Omicron infection, shedding light on the pathophysiology of COVID-19, particularly in cases associated with mild disease. It also underscores the potential clinical applications of saliva for disease screening in hospital settings. Data are available via ProteomeXchange with the identifier PXD054133.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.4c00630 | DOI Listing |
Access Microbiol
January 2025
Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Comparative immunogenicity from different mRNA booster vaccines (directed at WT, BA.1 or BA.4/5 antigens) remains unclear.
View Article and Find Full Text PDFiScience
January 2025
Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Whether Omicron exposures could overcome ancestral SARS-CoV-2 immune imprinting remains controversial. Here we analyzed B cell responses evoked by sequential Omicron infections in vaccinated and unvaccinated individuals. Plasma neutralizing antibody titers against ancestral SARS-CoV-2 and variants indicate that immune imprinting is not consistently induced by inactivated or recombinant protein vaccines.
View Article and Find Full Text PDFVirol J
January 2025
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for in the Eastern Mediterranean Region, Institut Pasteur de Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 1002 le Belvédère, Tunis, Tunisia.
Background: Primary Immunodeficiency disorders (PID) can increase the risk of severe COVID-19 and prolonged infection. This study investigates the duration of SARS-CoV-2 excretion and the genetic evolution of the virus in pediatric PID patients as compared to immunocompetent (IC) patients.
Materials And Methods: A total of 40 nasopharyngeal and 24 stool samples were obtained from five PID and ten IC children.
NPJ Vaccines
January 2025
Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China.
The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!