Hepatocellular carcinoma (HCC) is a major global health concern that accounts for more than 80% of all primary hepatic carcinomas. The long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) has been linked to HCC cell stemness and proliferation. However, the exact function of FGD5-AS1 in HCC remains unclear. Cell viability and proliferation were examined using the CCK8 and colony formation assays, respectively. Cell stemness was examined using a sphere formation assay. To investigate the relation between Musashi 2 (MSI2) and FGD5-AS1 (or protein kinase D1 [PKD1]), RNA immunoprecipitation and RNA pull-down assays were used. Furthermore, a xenograft mouse model was established to evaluate the function of FGD5-AS1 in vivo. FGD5-AS1, MSI2, and PKD1 were upregulated in the HCC tissues. FGD5-AS1 knockdown significantly inhibited the viability, proliferation, and stemness of HCC cells and decreased the expression of MSI2, PKD1, octamer-binding transcription factor 4, SOX2, NANOG, and Prominin-1 in HCC cells. Mechanistically, FGD5-AS1 increased PKD1 mRNA stability by upregulating MSI2 expression. Both MSI2 and PKD1 ameliorated sh-FGD5-AS1's inhibition of HCC cell viability, proliferation, and stemness. Furthermore, FGD5-AS1 silencing inhibited HCC tumor growth and stemness in vivo. FGD5-AS1 promotes the stemness of HCC cells by activating the MSI2/PKD1 axis. Our study provides a new theoretical foundation for the development of novel HCC treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23873DOI Listing

Publication Analysis

Top Keywords

cell stemness
12
viability proliferation
12
msi2 pkd1
12
hcc cells
12
hcc
10
fgd5-as1
9
hepatocellular carcinoma
8
pkd1 mrna
8
mrna stability
8
hcc cell
8

Similar Publications

Introduction: Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.

Materials And Methods: GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi).

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major global health concern that accounts for more than 80% of all primary hepatic carcinomas. The long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) has been linked to HCC cell stemness and proliferation. However, the exact function of FGD5-AS1 in HCC remains unclear.

View Article and Find Full Text PDF

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!