Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.3 ± 0.1 %. In vivo, following acute myocardial ischaemia-reperfusion injury in mice, NanoDRP1i1 significantly reduced infarct size and serine-616 phosphorylation of Drp1, and restored cardiomyocyte mitochondrial size to that of sham group. Imaging by mass spectrometry revealed higher accumulation of DRP1i1 in the heart tissue when delivered as NanoDRP1i1. In human cardiac organoids subjected to simulated ischaemia-reperfusion injury, treatment with NanoDRP1i1 at reperfusion significantly reduced cardiac cell death, contractile dysfunction, and mitochondrial superoxide levels. Following NanoDRP1i1 treatment, cardiac organoid proteomics further confirmed reprogramming of contractile dysfunction markers and enrichment of the mitochondrial protein network, cytoskeletal and metabolic regulation networks when compared to the simulated injury group. These proteins included known cardioprotective regulators identified in human organoids and in vivo murine studies following ischaemia-reperfusion injury. DRP1i1 is a promising tool compound to study Drp1-mediated mitochondrial fission and exhibits promising therapeutic potential for acute cardioprotection, especially when delivered using the cardiac-targeted cubosome nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708310 | PMC |
http://dx.doi.org/10.1016/j.jmccpl.2024.100085 | DOI Listing |
J Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
Background: Lung transplantation is the only effective therapeutic option for patients with end-stage lung disease. However, ischemia/reperfusion injury (IRI) during transplantation is a leading cause of primary graft dysfunction (PGD). Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has been implicated in IRI across various organs.
View Article and Find Full Text PDFSpontaneous coronary artery dissection (SCAD) is characterized by intramural hematoma in a coronary artery leading to partial or complete vessel obstruction. A 51-year-old female was hospitalized with acute myocardial infarction and cardiogenic shock. She was diagnosed with severe SCAD, affecting the proximal left coronary artery.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
March 2025
Center for Clinical Investigation (CIC1436)/CARDIOMET, Rangueil University Hospital, Toulouse, France.
Background: The identification of new biomarkers that improve existing cardiovascular risk prediction models for acute coronary syndrome is essential for accurately identifying high-risk patients and refining treatment strategies. Autophagy, a vital cellular degradation mechanism, is important for maintaining cardiac health. Dysregulation of autophagy has been described in cardiovascular conditions such as myocardial ischemia-reperfusion injury, a key factor in myocardial infarction (MI).
View Article and Find Full Text PDFSmall
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.
Although classical fluorescent dyes feature advantages of high quantum yield, tunable "OFF-ON" fluorescence, and modifiable chemical structures, etc., their bio-applications in deep tissue remains challenging due to their excessively short emission wavelength (that may lead to superficial tissue penetration depth). Therefore, there is a pressing need for pushing the wavelength of classical dyes from visible region to NIR-II window.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!