Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6). If everything is everywhere, why have distinct areas? Here we show that the function of a brain area is more related to how different types of information are combined (formatted) in neural representations than merely whether that information is present. We compared two brain areas: the middle temporal area (MT), which is important for visual motion perception (7, 8), and the dorsolateral prefrontal cortex (dlPFC), which is linked to decision-making and reward expectation (9,10)). When monkeys based decisions on a combination of motion and reward information, both types of information were present in both areas. However, they were formatted differently: in MT, they were encoded separably, while in dlPFC, they were represented jointly in ways that reflected the monkeys' decision-making. A recurrent neural network (RNN) model that mirrored the information formatting in MT and dlPFC predicted that manipulating activity in these areas would differently affect decision-making. Consistent with model predictions, electrically stimulating MT biased choices midway between the visual motion stimulus and the preferred direction of the stimulated units (11), while stimulating dlPFC produced 'winner-take-all' decisions that sometimes reflected the visual motion stimulus and sometimes reflected the preference of the stimulated units, but never in between. These results are consistent with the tantalizing possibility that a modular structure enables complex behavior by flexibly reformatting information to accomplish behavioral goals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722384 | PMC |
http://dx.doi.org/10.1101/2025.01.03.631242 | DOI Listing |
The origins of resting-state functional MRI (rsfMRI) signal fluctuations remain debated. Recent evidence shows coupling between global cortical rsfMRI signals and cerebrospinal fluid inflow in the fourth ventricle, increasing during sleep and decreasing with Alzheimer's disease (AD) progression, potentially reflecting brain clearance mechanisms. However, the existence of more complex brain-ventricle coupling modes and their relationship to cognitive decline remains unexplored.
View Article and Find Full Text PDFAnimals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).
View Article and Find Full Text PDFUnlabelled: Sensory stimuli vary across a variety of dimensions, like contrast, orientation, or texture. The brain must rely on population representations to disentangle changes in one dimension from changes in another. To understand how the visual system might extract separable stimulus representations, we recorded multiunit neuronal responses to texture images varying along two dimensions: contrast, a property represented as early as the retina, and naturalistic statistical structure, a property that modulates neuronal responses in V2 and V4, but not in V1.
View Article and Find Full Text PDFUnlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).
View Article and Find Full Text PDFCogn Neurodyn
December 2025
PIT Bioinformatics Group, Eötvös University, Budapest, H-1117 Hungary.
The correlations of several fundamental properties of human brain connections are investigated in a consensus connectome, constructed from 1064 braingraphs, each on 1015 vertices, corresponding to 1015 anatomical brain areas. The properties examined include the edge length, the fiber count, or edge width, meaning the number of discovered axon bundles forming the edge and the occurrence number of the edge, meaning the number of individual braingraphs where the edge exists. By using our previously published robust braingraphs at https://braingraph.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!