Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria. First, an exhaustive study was conducted to reveal the specific pathways involved in the biosynthesis of CdS QDs. The widely known homologous enzyme, cysteine desulfhydrase, which catalyzes the synthesis of CdS QDs from a cysteine substrate, is also present in sp. and is referred to as the OSH enzyme. The structure of the OSH enzyme was determined through X-ray crystallography. Moreover, we identified two new pathways. One involved the SQR enzyme in sp., which catalyzed the formation of sulfur globules and subsequently catalyzed further reactions with GSH to release HS; subsequently, a CdS QD biosynthesis pathway was successfully constructed. The other pathway involved extracellular polyphosphate, a bacterial metabolic product, which with the addition of GSH and Cd, resulted in the formation of water-soluble fluorescent CdS QDs in the supernatant. Based on the above-described mechanism, after the bioleaching of Cd from cadmium waste by sp., CdS QDs were directly obtained from the bacterial culture supernatants. This work provides important insights into cleaner production and cadmium bioremediation with potential industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718510PMC
http://dx.doi.org/10.1039/d4cb00195hDOI Listing

Publication Analysis

Top Keywords

cds qds
20
waste cds
12
one-step route
8
cds
8
cds quantum
8
quantum dots
8
cadmium waste
8
pathways involved
8
osh enzyme
8
qds
5

Similar Publications

Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.

View Article and Find Full Text PDF

The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.

View Article and Find Full Text PDF

The excessive use of pesticides is an urgent issue facing environmental sustainability and human health. In this study, a uniform dispersion size, good fluorescence performance and mesoporous structure of a ratiometric fluorescent probe were constructed for nicosulfuron detection. A solvent-free in situ solid-phase synthesis method was used to encapsulate biomass carbon dots within mesoporous silica (CDs@mSiO₂), followed by the modification of l-cysteine-modified manganese-doped zinc sulfide quantum dots (ZnS:Mn QDs), to construct a ratiometric fluorescent probe for highly sensitive and selective detection of nicosulfuron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!