Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited. Nano-particles, as a novel drug delivery system, have significant potential for improving therapeutic efficacy and overcoming these challenges.

Methods: According to the high expression level of matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, MMP-2 responsive nano-particles (PVGLIG-MTX-D/T-NMs) containing docetaxel and triptolide were prepared by the thin-film dispersion method. The synergistic effect between docetaxel and triptolide was systematically investigated, the ratio of the two drugs was optimized, and the physicochemical properties of the nano-particles and their ability to inhibit ovarian cancer cell growth and metastasis were evaluated in vitro and in vivo.

Results: PVGLIG-MTX-D/T-NMs enhanced the targeting, stability, and bioavailability of the drug, while reducing the dose and toxicity. In addition, by regulating the expression levels of E-Cadherin, N-Cadherin, matrix metalloproteinases (MMPs), hypoxia-inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF), it exhibited an inhibitory effect on epithelial-mesenchymal transformation (EMT) and tumor cell angiogenesis, and effectively inhibited the invasion and metastasis of ovarian cancer cells.

Conclusion: PVGLIG-MTX-D/T-NMs achieved passive targeting of tumor sites by enhancing permeability and retention (EPR) effects. Subsequently, the uptake of the drug by tumor cells was enhanced by MMP-2 responsiveness and the modification of methotrexate targeting ligands. By regulating the expression levels of invasion- and metastasis-related proteins in tumor tissues, the nano-particles affected the EMT process, inhibited tumor angiogenesis, and suppressed the malignant potential of invasion and metastasis in ovarian cancer. These findings provided a new direction for further exploration of tumor-targeted therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724672PMC
http://dx.doi.org/10.2147/IJN.S470219DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
invasion metastasis
16
metastasis ovarian
12
tumor microenvironment
8
potential invasion
8
docetaxel triptolide
8
regulating expression
8
expression levels
8
tumor
7
metastasis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!