Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.

Methods: The ICFESs were fabricated by emulsification approach and characterized through instrumental detection. The capabilities of the ICFESs on tumor targeting, intratumoral retention, and cancer photochemotherapy were evaluated using melanoma tumor-bearing mice in association with histological studies and serum marker analyses.

Results: ICFESs can be rapidly internalized by homologous melanoma cells, induce hyperthermia and increase the yield of singlet oxygen upon exposure to near-infrared (NIR) irradiation. After 5 min of NIR exposure and 24 h of in vitro culture, ICFESs encapsulating ≥ 10/10 μM [ICG]/[CPT] effectively killed more than 70% of the cancer cells, inducing greater mortality than that caused by a 4-fold higher dose of CPT alone. In a murine melanoma model, we demonstrated that ICFESs indeed targeted homologous tumors with prolonged intratumoral retention compared with free ICG in vivo. Moreover, tumor growth was significantly arrested by ICFESs containing 40/40 μM [ICG]/[CPT] in combination with 30 sec of NIR exposure without systemic toxicity, and the resulting tumors were approximately 15-fold smaller than those treated for 14 days with 40 μM free CPT alone.

Conclusion: We suggest that the aforementioned anticancer efficacy was achieved via a dual-stage mechanism, phototherapy followed by chemotherapy. Taken together, the developed ICFESs are anticipated to be highly applicable for clinical cancer treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725285PMC
http://dx.doi.org/10.2147/IJN.S505458DOI Listing

Publication Analysis

Top Keywords

loaded indocyanine
8
indocyanine green
8
cancer treatment
8
icfess
8
icfess targeted
8
intratumoral retention
8
nir exposure
8
cancer
6
engineered perfluorochemical
4
perfluorochemical cancer-derived
4

Similar Publications

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

Skin cancer is the world's fifth most diagnosed malignancy and is increasingly occurring in young adults. The elevated morbidity and mortality of skin cancer are known to be highly correlated with its frequent recurrence after tumor excision. Although regimens such as chemotherapy and/or immunotherapy are often administered following surgical treatments, the patients may suffer from severe side effects, drug resistance, and/or high cost during treatments, indicating that the development of an effective and safe modality for skin cancer after surgery is still highly demanded nowadays.

View Article and Find Full Text PDF

Purpose: Predicting long-term anatomical responses in neovascular age-related macular degeneration (nAMD) patients is critical for patient-specific management. This study validates a generative deep learning (DL) model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.

Methods: A total of 533 eyes from 513 treatment-naïve nAMD patients were analyzed.

View Article and Find Full Text PDF

Fibroblast activation protein peptide-targeted NIR-I/II fluorescence imaging for stable and functional detection of hepatocellular carcinoma.

Eur J Nucl Med Mol Imaging

January 2025

Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.

Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!