In the context of survival analysis, data-driven neural network-based methods have been developed to model complex covariate effects. While these methods may provide better predictive performance than regression-based approaches, not all can model time-varying interactions and complex baseline hazards. To address this, we propose Case-Base Neural Networks (CBNNs) as a new approach that combines the case-base sampling framework with flexible neural network architectures. Using a novel sampling scheme and data augmentation to naturally account for censoring, we construct a feed-forward neural network that includes time as an input. CBNNs predict the probability of an event occurring at a given moment to estimate the full hazard function. We compare the performance of CBNNs to regression and neural network-based survival methods in a simulation and three case studies using two time-dependent metrics. First, we examine performance on a simulation involving a complex baseline hazard and time-varying interactions to assess all methods, with CBNN outperforming competitors. Then, we apply all methods to three real data applications, with CBNNs outperforming the competing models in two studies and showing similar performance in the third. Our results highlight the benefit of combining case-base sampling with deep learning to provide a simple and flexible framework for data-driven modeling of single event survival outcomes that estimates time-varying effects and a complex baseline hazard by design. An R package is available at https://github.com/Jesse-Islam/cbnn.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720922PMC
http://dx.doi.org/10.1016/j.mlwa.2024.100535DOI Listing

Publication Analysis

Top Keywords

neural network
12
complex baseline
12
case-base neural
8
survival analysis
8
neural network-based
8
time-varying interactions
8
case-base sampling
8
baseline hazard
8
neural
5
methods
5

Similar Publications

Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.

Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!