In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found. The results showed that the pastures with higher grades could help to improve the quality of milk flavor, and the heat treatment had a significant impact on the milk flavor profile. The pasteurization was effective in eliminating undesirable flavors such as hexanal (ROAV>1) resulting from the oxidation of raw milk fat, whereas the ultra-high temperature sterilization exacerbated the oxidation of milk fat that led to the massive production of ketones such as 2-heptanone (0.9 < ROAV<1.3), which contributed to undesirable milk flavors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719328PMC
http://dx.doi.org/10.1016/j.fochx.2024.102083DOI Listing

Publication Analysis

Top Keywords

raw milk
16
milk flavor
12
milk
10
milk uht
8
uht milk
8
ultra-high temperature
8
temperature sterilization
8
milk fat
8
exploration milk
4
flavor
4

Similar Publications

In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.

View Article and Find Full Text PDF

The complexity of modern food supply chains limits the effectiveness of targeted approaches to address food traceability issues. Untargeted metabolomics provides a comprehensive profile of small molecules present within biological samples. In this study, the potential of ultra-high performance liquid chromatography-ion mobility-high resolution mass spectrometry (UHPLC-IMS-HRMS) to discriminate bovine milk samples collected at individual level was evaluated for traceability purposes.

View Article and Find Full Text PDF

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

Influence of Heat- and Cold-Stressed Raw Milk on the Stability of UHT Milk.

Foods

December 2024

Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.

This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ -25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ -10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day.

View Article and Find Full Text PDF

Goats are the one of the most susceptible domestic species to toxoplasmosis affecting animal health and production. The present study aimed to determine the seroprevalence of T. gondii infection in dairy goats from Rio de Janeiro, Brazil, as well as to evaluate associated risk factors, parasitic DNA detection in raw goat milk samples, and attempts to isolate the parasite from raw goat milk samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!