AI Article Synopsis

  • The globus pallidus internus (GPi) is the primary target for deep brain stimulation (DBS) in dystonia treatment, but some patients show low response rates.
  • A survey of DBS clinicians revealed that over 85% frequently use alternative targets, like the subthalamic nucleus, especially for patients who do not respond well to GPi-DBS.
  • There is a need for more research on the effectiveness of these alternative targets and better criteria for identifying nonresponding dystonia patients.

Article Abstract

Background: The globus pallidus internus (GPi) is the traditional evidence-based deep brain stimulation (DBS) target for treating dystonia. Although patients with isolated "primary" dystonia respond best to GPi-DBS, some are primary or secondary nonresponders (improvement <25%), showing variability in clinical response.

Objective: The aim was to survey current practices regarding alternative DBS targets for isolated dystonia patients with focus on nonresponders to GPi-DBS.

Methods: A 42-question survey was emailed and distributed during a DBS conference to clinicians involved in DBS for dystonia. The survey covered (1) use of alternative DBS targets as primary or rescue options, (2) target selection based on dystonia phenomenology, (3) experience with secondary nonresponders to GPi-DBS, and (4) management of patients with additional DBS leads.

Results: The response rate was 53.8%, including neurologists and neurosurgeons from 28 DBS centers in 13 countries; 89% of neurologists and 86% of neurosurgeons used alternative DBS targets to GPi, with subthalamic nucleus being the most common initial or rescue alternative to GPi. Patients with additional tremor received DBS in the ventral intermediate nucleus or caudal zona incerta. Individual experience ranged from 5 to 25 patients. Most patients were still receiving dual target stimulation at the last follow-up.

Conclusions: We show that more than 85% of surveyed clinicians use alternative DBS targets, mostly in some isolated dystonia patients not adequately responsive to GPi-DBS. More knowledge is needed to evaluate outcomes in alternative targets and establish the best strategies for managing insufficient GPi-DBS response in dystonia patients with diverse phenomenology. Our article contributes to establishing a clearer time frame and criteria for defining nonresponders in dystonia patients undergoing DBS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mdc3.14324DOI Listing

Publication Analysis

Top Keywords

deep brain
8
brain stimulation
8
alternative deep
4
stimulation targets
4
targets treatment
4
treatment isolated
4
isolated dystonic
4
dystonic syndromes
4
syndromes multicenter
4
multicenter experience-based
4

Similar Publications

The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects.

View Article and Find Full Text PDF

Emerging Deep Brain Stimulation Targets in the Cerebellum for Tremor.

Cerebellum

January 2025

Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach.

View Article and Find Full Text PDF

Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.

View Article and Find Full Text PDF

Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).

View Article and Find Full Text PDF

The effect of deep magnetic stimulation on the cardiac-brain axis post-sleep deprivation: a pilot study.

Front Neurosci

January 2025

Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.

Introduction: Sleep deprivation (SD) significantly disrupts the homeostasis of the cardiac-brain axis, yet the neuromodulation effects of deep magnetic stimulation (DMS), a non-invasive and safe method, remain poorly understood.

Methods: Sixty healthy adult males were recruited for a 36-h SD study, they were assigned to the DMS group or the control group according to their individual willing. All individuals underwent heart sound measurements and functional magnetic resonance imaging scans at the experiment's onset and terminal points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!