Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels. This study enhances vascular residual stress through varied conditions of proanthocyanidin (PC) cross-linking on decellularized vessels. Microstructural analysis and mechanical investigations across various scales of fresh, decellularized, and residual stress-recovered vessels are performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), and uniaxial tensile testing. Results demonstrate substantial alterations in the morphology of elastic and collagen fibers post-decellularization, which remarkably resemble fresh vessels following residual stress recovery. Furthermore, both the micro- and macro-mechanical characteristics of vessels post-residual stress recovery, including Young's modulus, viscoelasticity, and adhesion, closely resemble those of fresh vessels. Finite element modeling (FEM) confirms the distribution of residual stress and its role in enhancing vascular mechanical integrity. This experimental investigation provides a theoretical foundation at both micro and macroscopic levels for the development of biomimetic blood vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202402250 | DOI Listing |
Adv Healthc Mater
January 2025
Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.
Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.
View Article and Find Full Text PDFCan J Cardiol
January 2025
Research Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Canada; Adult Congenital Heart Centre, Montreal Heart Institute, Université de Montréal, Montreal, Canada. Electronic address:
In congenital heart diseases (CHD) of moderate to great complexity involving the right ventricle (RV), the morphologic RV can be exposed to significant stressors across the lifespan either in a biventricular circulation in a sub-pulmonary or sub-aortic position, or as part of a univentricular circulation. These include pressure and/or volume overload, hypoxia, ischemia, and periprocedural surgical stress leading to remodeling, maladaptation, dilation hypertrophy and dysfunction. This review examines the macroscopic remodeling of the RV in various forms of CHD and explores remodeling trajectories, along with the effects of surgeries and residual lesion repair, in tetralogy of Fallot, Ebstein anomaly, congenitally corrected transposition of the great arteries, transposition of the great arteries with atrial switch surgery, and single ventricle palliated by Fontan.
View Article and Find Full Text PDFInt J Pharm
January 2025
Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Sichuan-Chengdu 610106, China. Electronic address:
Gastric ulcers often cause postprandial epigastric pain, especially in acute cases. Abnormal motility, with about 50 % of patients having delayed gastric emptying, contributes to ulcer development. Costunolide (COS) and dehydrocostuslactone (DEH), derived from "Mu xiang" herbs, show potential in treating ulcers and regulating gastrointestinal motility.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Psychological Health and Readiness, Naval Health Research Center, San Diego, CA, USA. Electronic address:
Despite effective psychotherapy options for posttraumatic stress disorder (PTSD), some patients do not fully respond, and even among those reporting substantial improvement, residual symptoms following treatment are common. Psychiatric conditions frequently co-occur with PTSD, yet research on residual symptoms among comorbid samples is lacking. This study examined residual symptoms of PTSD and depression among 71 active duty service members with PTSD and comorbid major depressive disorder (MDD).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
Optimized heat treatment processes for high-strength, low-alloy steel are studied in order to maximize the strengthening effects of the alloying elements and achieve a favorable balance of strength and ductility. In this study, it is found that high-energy-density electric pulse treatment (EPT) can effectively reduce the residual stress in quenched high-strength, low-alloy steel. Furthermore, EPT promotes the precipitation of fine needle-like ε-carbides and small spherical MC carbides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!