Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear. In this study, we describe the depolarization process of targeted neuron ablation by a femtosecond laser based on a standard two-photon microscope in vitro and in vivo. The photoporation damages the cell membrane, depolarizes the membrane potential, and thus disables the neuron's ability to fire action potentials. The dysfunctional neuron after laser ablation affects both the responses of surrounding neighbors and the functions of ensemble neurons in vivo. Although abnormal Ca responses in spatially surrounding neurons are observed, the damage effect is confined to the focal volume. The function of the neuronal ensembles that associate with a specific visual stimulation is not influenced by the ablation of an individual member of the ensemble, indicating the redundancy of the ensemble organization. This study thus provides an insight into the targeted neuron ablation as well as the role of an individual neuron in an ensemble.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.4c00538 | DOI Listing |
Phys Eng Sci Med
January 2025
Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Bangalore, India.
Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Children's Medical Center, Department of Pediatric Neurology, Peking University First Hospital, Beijing, China.
Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.
View Article and Find Full Text PDFUnlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.
View Article and Find Full Text PDFBackground: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
View Article and Find Full Text PDFBackground: Tau protein accumulation is closely linked to synaptic and neuronal loss in Alzheimer's disease (AD), resulting in progressive cognitive decline. Although tau-PET imaging is a direct biomarker of tau pathology, it is costly, carries radiation risks, and is not widely accessible. Resting-state functional MRI (rs-fMRI) complexity-an entropy-based measure of BOLD signal variation-has been proposed as a non-invasive surrogate biomarker of early neuronal dysfunction associated with tau pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!