Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH). This study aimed to investigate the induction receptivity of two commonly used mice species, C57BL/6 and BALB/c, to DMH-induced CRC.

Methods: Both mice species were exposed to weekly intraperitoneal injections of DMH at a dose of 20 mg/kg body weight for 15 consecutive weeks. The response to DMH was evaluated by monitoring body weight gain, daily food intake, and gastrointestinal symptoms. At the end of exposure, histopathology of distal colon dissected from both species was analyzed.

Results: Results revealed that C57BL/6 had a higher response to DMH compared to BALB/c. A significant decrease in body weight gain concomitant with severe diarrhea was observed in C57BL/6 receiving DMH compared to their controls, without any difference in food intake. Histopathology of distal colon revealed aberrant crypt foci and loss of goblet cells in DMH-exposed C57BL/6 mice. On the other hand, BALB/c mice displayed a normal and intact colon, with a normal weight gain pattern, and without any gastrointestinal symptoms.

Conclusion: In conclusion, C57BL/6 has a higher susceptibility toward chemical induction to CRC; therefore, it can be used to study CRC pathogenesis, prevention, and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s43046-024-00255-xDOI Listing

Publication Analysis

Top Keywords

mice species
16
body weight
12
weight gain
12
susceptibility mice
8
chemical induction
8
colorectal cancer
8
response dmh
8
food intake
8
histopathology distal
8
distal colon
8

Similar Publications

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Pym-18a, a novel pyrimidine derivative ameliorates glucocorticoid induced osteoblast apoptosis and promotes osteogenesis via autophagy and PINK 1/Parkin mediated mitophagy induction.

Biochem Pharmacol

January 2025

Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored.

View Article and Find Full Text PDF

Investigating the Molecular Mechanisms of Jiangu Decoction in Treating Type 2 Diabetic Osteoporosis.

J Ethnopharmacol

January 2025

Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China; Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetic osteoporosis (T2DOP) is a metabolic bone disease characterized by impaired bone structure and decreased bone strength in diabetic patients. Jiangu Decoction (JGD), a traditional Chinese poly-herbal formulation, has shown efficacy in mitigating osteoporosis (OP) and fractures caused by osteoporosis in diabetic patients in clinical trials. In addition, JGD has been proven to promote the proliferation of osteoblasts.

View Article and Find Full Text PDF

The brain interactome of a permissive prion replication substrate.

Neurobiol Dis

January 2025

Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!