The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation. The prospect of exhibiting a synergistic antitumor effect is to target a multi-pathway approach, reduce dosage, and minimize potential side effects. However, their effectiveness is limited by poor bioavailability. Nanoscale delivery systems are promising strategies for the delivery of polyphenols. Nevertheless, many of these nanomaterials are yet to be commercialized owing to their lack of versatility or manufacturing costs. Thus, developing a formulation that responds to body conditions is a great challenge and would provide a better way to orally administer polyphenols. Therefore, this study aimed to develop a dual-responsive disulfide-linked core-shell nanohybrid for oral delivery and targeted release of polyphenols in the colon. The nanohybrid had monodispersed structures with a size of < 50 nm, large pore size (> 9.5 nm), surface area of > 700 m/g, and zeta potential of - 30.71 ± 0.71 mV. The polyphenols were encapsulated into the nanohybrid in their amorphous state, with a loading capacity of 20.49%. The coating enhanced the release of polyphenols into the intestinal fluid, potentially improving their delivery to the colon. The nanohybrid demonstrated a better anticancer effect than the free polyphenols against HT29 cancer cells. This study explores the use of a dual-sensitive alginate-coated mesoporous silica nanohybrid as a carrier for the enhanced delivery of polyphenols.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-024-01777-6DOI Listing

Publication Analysis

Top Keywords

curcumin quercetin
12
mesoporous silica
8
oral delivery
8
delivery polyphenols
8
release polyphenols
8
colon nanohybrid
8
polyphenols
7
delivery
6
alginate coated
4
coated mesoporous
4

Similar Publications

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Dietary supplementation and the role of phytochemicals against the Alzheimer's disease: Focus on polyphenolic compounds.

J Prev Alzheimers Dis

January 2025

Indian Scientific Education and Technology Foundation, Lucknow, 226002, India. Electronic address:

Alzheimer's disease is a complicated, multifaceted, neurodegenerative illness that places an increasing strain on healthcare systems. Due to increasing malfunction and death of nerve cells, the person suffering from Alzheimer's disease (AD) slowly and steadily loses their memories, cognitive functions and even their personality. Although medications may temporarily enhance memory, there are currently no permanent therapies that can halt or cure this irreversible neurodegenerative process.

View Article and Find Full Text PDF

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF
Article Synopsis
  • Gastric cancer poses a significant health challenge globally, leading to a search for innovative treatments.
  • Natural polyphenolic compounds like resveratrol, piceatannol, curcumin, and quercetin show potential in cancer prevention and treatment due to their diverse biological effects.
  • While these compounds have shown promise in fighting gastric cancer, issues like low bioavailability highlight the need for further research on effective delivery methods.
View Article and Find Full Text PDF

Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!