Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance. In this study, we utilized a combinatorial functionomics approach, the Quadratic Phenotypic Optimization Platform (QPOP), to rationally design drug pairings that exploit the molecular fingerprint and vulnerability of established in vitro isogenic radioresistant (RR)-HNC models.

Methods: A QPOP-specific protocol was applied to RR-HNC models to rank and compare all possible drug combinations from a 12-drug set comprising standard chemotherapy, small molecule inhibitors and targeted therapies specific to HNC. Drug combination efficacy was evaluated by computing combination index scores, and by measuring apoptotic response. Drug targeting was validated by western blot analyses, and the Comet assay was used to quantify DNA damage. Enhanced histone deacetylase inhibitor (HDACi) efficacy in RR models was further examined by in vivo studies, and genetic and chemical inhibition of major Class I/II HDACs. Regulatory roles of HDAC6/SP1 axis were investigated using immunoprecipitation, gel shift and ChIP-qPCR assays. Comparative transcriptomic analyses were employed to determine the prognostic significance of targeting HDAC6.

Results: We report the therapeutic potential of combining panobinostat (pan-HDAC inhibitor) with AZD7762 (CHK1/2 inhibitor; AstraZeneca) or ionizing radiation (IR) to re-sensitize RR-HNC cells and showed increased DNA damage underlying enhanced synergy. We further refined this RR-specific drug combination and prioritized HDAC6 as a targetable dependency in reversing radioresistance. We provide mechanistic insights into HDAC6-mediated regulation via a crosstalk involving SP1 and oncogenic and repair genes. From two independent patient cohorts, we identified a four-gene signature that may have discriminative ability to predict for radioresistance and amenable to HDAC6 inhibition.

Conclusion: We have uncovered HDAC6 as a promising molecular vulnerability that should be explored to treat RR-HNC.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40164-024-00590-8DOI Listing

Publication Analysis

Top Keywords

combinatorial functionomics
8
molecular vulnerability
8
head neck
8
drug combination
8
dna damage
8
drug
5
functionomics identifies
4
identifies hdac6-dependent
4
hdac6-dependent molecular
4
vulnerability radioresistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!